cordyceps/list/
cursor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
use super::{Link, Links, List};
use crate::{util::FmtOption, Linked};
use core::{
    fmt, mem,
    ops::{Deref, DerefMut},
    pin::Pin,
    ptr::NonNull,
};

/// A cursor over a [`List`] with editing operations.
///
/// A `CursorMut` is like a mutable [`Iterator`] (and it [implements the
/// `Iterator` trait](#impl-Iterator)), except that it can freely seek
/// back and forth, and can  safely mutate the list during iteration. This is
/// because the lifetime of its yielded references is tied to its own lifetime,
/// instead of that of the underlying underlying list. This means cursors cannot
/// yield multiple elements at once.
///
/// Cursors always rest between two elements in the list, and index in a
/// logically circular way — once a cursor has advanced past the end of
/// the list, advancing it again will "wrap around" to the first element, and
/// seeking past the first element will wrap the cursor around to the end.
///
/// To accommodate this, there is a null non-element that yields `None` between
/// the head and tail of the list. This indicates that the cursor has reached
/// an end of the list.
///
/// This type implements the same interface as the
/// [`alloc::collections::linked_list::CursorMut`] type, and should behave
/// similarly.
pub struct CursorMut<'list, T: Linked<Links<T>> + ?Sized> {
    core: CursorCore<T, &'list mut List<T>>,
}

/// A cursor over a [`List`].
///
/// A `Cursor` is like a by-reference [`Iterator`] (and it [implements the
/// `Iterator` trait](#impl-Iterator)), except that it can freely seek
/// back and forth, and can  safely mutate the list during iteration. This is
/// because the lifetime of its yielded references is tied to its own lifetime,
/// instead of that of the underlying underlying list. This means cursors cannot
/// yield multiple elements at once.
///
/// Cursors always rest between two elements in the list, and index in a
/// logically circular way &mdash; once a cursor has advanced past the end of
/// the list, advancing it again will "wrap around" to the first element, and
/// seeking past the first element will wrap the cursor around to the end.
///
/// To accommodate this, there is a null non-element that yields `None` between
/// the head and tail of the list. This indicates that the cursor has reached
/// an end of the list.
///
/// This type implements the same interface as the
/// [`alloc::collections::linked_list::Cursor`] type, and should behave
/// similarly.
///
/// For a mutable cursor, see the [`CursorMut`] type.
pub struct Cursor<'list, T: Linked<Links<T>> + ?Sized> {
    core: CursorCore<T, &'list List<T>>,
}

/// A type implementing shared functionality between mutable and immutable
/// cursors.
///
/// This allows us to only have a single implementation of methods like
/// `move_next` and `move_prev`, `peek_next,` and `peek_prev`, etc, for both
/// `Cursor` and `CursorMut`.
struct CursorCore<T: ?Sized, L> {
    list: L,
    curr: Link<T>,
    index: usize,
}

// === impl CursorMut ====

impl<'list, T: Linked<Links<T>> + ?Sized> Iterator for CursorMut<'list, T> {
    type Item = Pin<&'list mut T>;
    fn next(&mut self) -> Option<Self::Item> {
        let node = self.core.curr?;
        self.move_next();
        unsafe { Some(self.core.pin_node_mut(node)) }
    }

    /// A [`CursorMut`] can never return an accurate `size_hint` --- its lower
    /// bound is always 0 and its upper bound is always `None`.
    ///
    /// This is because the cursor may be moved around within the list through
    /// methods outside of its `Iterator` implementation, and elements may be
    /// added or removed using the cursor. This would make any `size_hint`s a
    /// [`CursorMut`] returns inaccurate.
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, None)
    }
}

impl<'list, T: Linked<Links<T>> + ?Sized> CursorMut<'list, T> {
    pub(super) fn new(list: &'list mut List<T>, curr: Link<T>, index: usize) -> Self {
        Self {
            core: CursorCore { list, index, curr },
        }
    }

    /// Returns the index of this cursor's position in the [`List`].
    ///
    /// This returns `None` if the cursor is currently pointing to the
    /// null element.
    pub fn index(&self) -> Option<usize> {
        self.core.index()
    }

    /// Moves the cursor position to the next element in the [`List`].
    ///
    /// If the cursor is pointing at the null element, this moves it to the first
    /// element in the [`List`]. If it is pointing to the last element in the
    /// list, then this will move it to the null element.
    pub fn move_next(&mut self) {
        self.core.move_next()
    }

    /// Moves the cursor to the previous element in the [`List`].
    ///
    /// If the cursor is pointing at the null element, this moves it to the last
    /// element in the [`List`]. If it is pointing to the first element in the
    /// list, then this will move it to the null element.
    // XXX(eliza): i would have named this "move_back", personally, but
    // `std::collections::LinkedList`'s cursor interface calls this
    // "move_prev"...
    pub fn move_prev(&mut self) {
        self.core.move_prev()
    }

    /// Removes the current element from the [`List`] and returns the [`Handle`]
    /// owning that element.
    ///
    /// If the cursor is currently pointing to an element, that element is
    /// removed and returned, and the cursor is moved to point to the next
    /// element in the [`List`].
    ///
    /// If the cursor is currently pointing to the null element, then no element
    /// is removed and `None` is returned.
    ///
    /// [`Handle`]: crate::Linked::Handle
    pub fn remove_current(&mut self) -> Option<T::Handle> {
        let node = self.core.curr?;
        unsafe {
            // before modifying `node`'s links, set the current element to the
            // one after `node`.
            self.core.curr = T::links(node).as_ref().next();
            // safety: `List::remove` is unsafe to call, because the caller must
            // guarantee that the removed node is part of *that* list. in this
            // case, because the cursor can only access nodes from the list it
            // points to, we know this is safe.
            self.core.list.remove(node)
        }
    }

    /// Find and remove the first element matching the provided `predicate`.
    ///
    /// This traverses the list from the cursor's current position and calls
    /// `predicate` with each element in the list. If `predicate` returns
    /// `true` for a given element, that element is removed from the list and
    /// returned, and the traversal ends. If the traversal reaches the end of
    /// the list without finding a match, then no element is returned.
    ///
    /// Note that if the cursor is not at the beginning of the list, then any
    /// matching elements *before* the cursor's position will not be removed.
    ///
    /// This method may be called multiple times to remove more than one
    /// matching element.
    pub fn remove_first(&mut self, mut predicate: impl FnMut(&T) -> bool) -> Option<T::Handle> {
        while !predicate(unsafe { self.core.curr?.as_ref() }) {
            // if the current element does not match, advance to the next node
            // in the list.
            self.move_next();
        }

        // if we have broken out of the loop without returning a `None`, remove
        // the current element.
        self.remove_current()
    }

    /// Borrows the element that the cursor is currently pointing at.
    ///
    /// This returns `None` if the cursor is currently pointing to the
    /// null element.
    pub fn current(&self) -> Option<Pin<&T>> {
        self.core.current()
    }

    /// Mutably borrows the element that the cursor is currently pointing at.
    ///
    /// This returns `None` if the cursor is currently pointing to the
    /// null element.
    pub fn current_mut(&mut self) -> Option<Pin<&mut T>> {
        self.core
            .curr
            .map(|node| unsafe { self.core.pin_node_mut(node) })
    }

    /// Borrows the next element after the cursor's current position in the
    /// list.
    ///
    /// If the cursor is pointing to the null element, this returns the first
    /// element in the [`List`]. If the cursor is pointing to the last element
    /// in the [`List`], this returns `None`.
    pub fn peek_next(&self) -> Option<Pin<&T>> {
        self.core.peek_next()
    }

    /// Borrows the previous element before the cursor's current position in the
    /// list.
    ///
    /// If the cursor is pointing to the null element, this returns the last
    /// element in the [`List`]. If the cursor is pointing to the first element
    /// in the [`List`], this returns `None`.
    // XXX(eliza): i would have named this "move_back", personally, but
    // `std::collections::LinkedList`'s cursor interface calls this
    // "move_prev"...
    pub fn peek_prev(&self) -> Option<Pin<&T>> {
        self.core.peek_prev()
    }

    /// Mutably borrows the next element after the cursor's current position in
    /// the list.
    ///
    /// If the cursor is pointing to the null element, this returns the first
    /// element in the [`List`]. If the cursor is pointing to the last element
    /// in the [`List`], this returns `None`.
    pub fn peek_next_mut(&mut self) -> Option<Pin<&mut T>> {
        self.core
            .next_link()
            .map(|next| unsafe { self.core.pin_node_mut(next) })
    }

    /// Mutably borrows the previous element before the cursor's current
    /// position in the list.
    ///
    /// If the cursor is pointing to the null element, this returns the last
    /// element in the [`List`]. If the cursor is pointing to the first element
    /// in the [`List`], this returns `None`.
    // XXX(eliza): i would have named this "move_back", personally, but
    // `std::collections::LinkedList`'s cursor interface calls this
    // "move_prev"...
    pub fn peek_prev_mut(&mut self) -> Option<Pin<&mut T>> {
        self.core
            .prev_link()
            .map(|prev| unsafe { self.core.pin_node_mut(prev) })
    }

    /// Inserts a new element into the [`List`] after the current one.
    ///
    /// If the cursor is pointing at the null element then the new element is
    /// inserted at the front of the [`List`].
    pub fn insert_after(&mut self, element: T::Handle) {
        let node = T::into_ptr(element);
        assert_ne!(
            self.core.curr,
            Some(node),
            "cannot insert a node after itself"
        );
        let next = self.core.next_link();

        unsafe {
            self.core
                .list
                .insert_nodes_between(self.core.curr, next, node, node, 1);
        }

        if self.core.curr.is_none() {
            // The null index has shifted.
            self.core.index = self.core.list.len;
        }
    }

    /// Inserts a new element into the [`List`] before the current one.
    ///
    /// If the cursor is pointing at the null element then the new element is
    /// inserted at the front of the [`List`].
    pub fn insert_before(&mut self, element: T::Handle) {
        let node = T::into_ptr(element);
        assert_ne!(
            self.core.curr,
            Some(node),
            "cannot insert a node before itself"
        );
        let prev = self.core.prev_link();

        unsafe {
            self.core
                .list
                .insert_nodes_between(prev, self.core.curr, node, node, 1);
        }

        self.core.index += 1;
    }

    /// Returns the length of the [`List`] this cursor points to.
    pub fn len(&self) -> usize {
        self.core.list.len()
    }

    /// Returns `true` if the [`List`] this cursor points to is empty
    pub fn is_empty(&self) -> bool {
        self.core.list.is_empty()
    }

    /// Splits the list into two after the current element. This will return a
    /// new list consisting of everything after the cursor, with the original
    /// list retaining everything before.
    ///
    /// If the cursor is pointing at the null element, then the entire contents
    /// of the `List` are moved.
    pub fn split_after(&mut self) -> List<T> {
        let split_at = if self.core.index == self.core.list.len {
            self.core.index = 0;
            0
        } else {
            self.core.index + 1
        };
        unsafe {
            // safety: we know we are splitting at a node that belongs to our list.
            self.core.list.split_after_node(self.core.curr, split_at)
        }
    }

    /// Splits the list into two before the current element. This will return a
    /// new list consisting of everything before the cursor, with the original
    /// list retaining everything after the cursor.
    ///
    /// If the cursor is pointing at the null element, then the entire contents
    /// of the `List` are moved.
    pub fn split_before(&mut self) -> List<T> {
        let split_at = self.core.index;
        self.core.index = 0;

        // TODO(eliza): this could be rewritten to use `let ... else` when
        // that's supported on `cordyceps`' MSRV.
        let split_node = match self.core.curr {
            Some(node) => node,
            // the split portion is the entire list. just return it.
            None => return mem::replace(self.core.list, List::new()),
        };

        // the tail of the new list is the split node's `prev` node (which is
        // replaced with `None`), as the split node is the new head of this list.
        let tail = unsafe { T::links(split_node).as_mut().set_prev(None) };
        let head = if let Some(tail) = tail {
            // since `tail` is now the head of its own list, it has no `next`
            // link any more.
            let _next = unsafe { T::links(tail).as_mut().set_next(None) };
            debug_assert_eq!(_next, Some(split_node));

            // this list's head is now the split node.
            self.core.list.head.replace(split_node)
        } else {
            None
        };

        let split = List {
            head,
            tail,
            len: split_at,
        };

        // update this list's length (note that this occurs after constructing
        // the new list, because we use this list's length to determine the new
        // list's length).
        self.core.list.len -= split_at;

        split
    }

    /// Inserts all elements from `spliced` after the cursor's current position.
    ///
    /// If the cursor is pointing at the null element, then the contents of
    /// `spliced` are inserted at the beginning of the `List` the cursor points to.
    pub fn splice_after(&mut self, mut spliced: List<T>) {
        // TODO(eliza): this could be rewritten to use `let ... else` when
        // that's supported on `cordyceps`' MSRV.
        let (splice_head, splice_tail, splice_len) = match spliced.take_all() {
            Some(splice) => splice,
            // the spliced list is empty, do nothing.
            None => return,
        };

        let next = self.core.next_link();
        unsafe {
            // safety: we know `curr` and `next` came from the same list that we
            // are calling `insert_nodes_between` from, because they came from
            // this cursor, which points at `self.list`.
            self.core.list.insert_nodes_between(
                self.core.curr,
                next,
                splice_head,
                splice_tail,
                splice_len,
            );
        }

        if self.core.curr.is_none() {
            self.core.index = self.core.list.len();
        }
    }

    /// Inserts all elements from `spliced` before the cursor's current position.
    ///
    /// If the cursor is pointing at the null element, then the contents of
    /// `spliced` are inserted at the end of the `List` the cursor points to.
    pub fn splice_before(&mut self, mut spliced: List<T>) {
        // TODO(eliza): this could be rewritten to use `let ... else` when
        // that's supported on `cordyceps`' MSRV.
        let (splice_head, splice_tail, splice_len) = match spliced.take_all() {
            Some(splice) => splice,
            // the spliced list is empty, do nothing.
            None => return,
        };

        let prev = self.core.prev_link();
        unsafe {
            // safety: we know `curr` and `prev` came from the same list that we
            // are calling `insert_nodes_between` from, because they came from
            // this cursor, which points at `self.list`.
            self.core.list.insert_nodes_between(
                prev,
                self.core.curr,
                splice_head,
                splice_tail,
                splice_len,
            );
        }

        self.core.index += splice_len;
    }

    /// Returns a read-only cursor pointing to the current element.
    ///
    /// The lifetime of the returned [`Cursor`] is bound to that of the
    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
    /// `CursorMut` is frozen for the lifetime of the [`Cursor`].
    #[must_use]
    pub fn as_cursor(&self) -> Cursor<'_, T> {
        Cursor {
            core: CursorCore {
                list: self.core.list,
                curr: self.core.curr,
                index: self.core.index,
            },
        }
    }
}

impl<T: Linked<Links<T>> + ?Sized> fmt::Debug for CursorMut<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let Self {
            core: CursorCore { list, curr, index },
        } = self;
        f.debug_struct("CursorMut")
            .field("curr", &FmtOption::new(curr))
            .field("list", list)
            .field("index", index)
            .finish()
    }
}

// === impl Cursor ====

impl<'list, T: Linked<Links<T>> + ?Sized> Iterator for Cursor<'list, T> {
    type Item = Pin<&'list T>;
    fn next(&mut self) -> Option<Self::Item> {
        let node = self.core.curr?;
        self.move_next();
        unsafe { Some(self.core.pin_node(node)) }
    }

    /// A [`Cursor`] can never return an accurate `size_hint` --- its lower
    /// bound is always 0 and its upper bound is always `None`.
    ///
    /// This is because the cursor may be moved around within the list through
    /// methods outside of its `Iterator` implementation. This would make any
    /// `size_hint`s a `Cursor`] returns inaccurate.
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, None)
    }
}

impl<'list, T: Linked<Links<T>> + ?Sized> Cursor<'list, T> {
    pub(super) fn new(list: &'list List<T>, curr: Link<T>, index: usize) -> Self {
        Self {
            core: CursorCore { list, index, curr },
        }
    }

    /// Returns the index of this cursor's position in the [`List`].
    ///
    /// This returns `None` if the cursor is currently pointing to the
    /// null element.
    pub fn index(&self) -> Option<usize> {
        self.core.index()
    }

    /// Moves the cursor position to the next element in the [`List`].
    ///
    /// If the cursor is pointing at the null element, this moves it to the first
    /// element in the [`List`]. If it is pointing to the last element in the
    /// list, then this will move it to the null element.
    pub fn move_next(&mut self) {
        self.core.move_next();
    }

    /// Moves the cursor to the previous element in the [`List`].
    ///
    /// If the cursor is pointing at the null element, this moves it to the last
    /// element in the [`List`]. If it is pointing to the first element in the
    /// list, then this will move it to the null element.
    // XXX(eliza): i would have named this "move_back", personally, but
    // `std::collections::LinkedList`'s cursor interface calls this
    // "move_prev"...
    pub fn move_prev(&mut self) {
        self.core.move_prev();
    }

    /// Borrows the element that the cursor is currently pointing at.
    ///
    /// This returns `None` if the cursor is currently pointing to the
    /// null element.
    pub fn current(&self) -> Option<Pin<&T>> {
        self.core.current()
    }

    /// Borrows the next element after the cursor's current position in the
    /// list.
    ///
    /// If the cursor is pointing to the null element, this returns the first
    /// element in the [`List`]. If the cursor is pointing to the last element
    /// in the [`List`], this returns `None`.
    pub fn peek_next(&self) -> Option<Pin<&T>> {
        self.core.peek_next()
    }

    /// Borrows the previous element before the cursor's current position in the
    /// list.
    ///
    /// If the cursor is pointing to the null element, this returns the last
    /// element in the [`List`]. If the cursor is pointing to the first element
    /// in the [`List`], this returns `None`.
    // XXX(eliza): i would have named this "move_back", personally, but
    // `std::collections::LinkedList`'s cursor interface calls this
    // "move_prev"...
    pub fn peek_prev(&self) -> Option<Pin<&T>> {
        self.core.peek_prev()
    }

    /// Returns the length of the [`List`] this cursor points to.
    pub fn len(&self) -> usize {
        self.core.list.len()
    }

    /// Returns `true` if the [`List`] this cursor points to is empty
    pub fn is_empty(&self) -> bool {
        self.core.list.is_empty()
    }
}

impl<T: Linked<Links<T>> + ?Sized> fmt::Debug for Cursor<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let Self {
            core: CursorCore { list, curr, index },
        } = self;
        f.debug_struct("Cursor")
            .field("curr", &FmtOption::new(curr))
            .field("list", list)
            .field("index", index)
            .finish()
    }
}

// === impl CursorCore ===

impl<'list, T, L> CursorCore<T, L>
where
    T: Linked<Links<T>> + ?Sized,
    L: Deref<Target = List<T>> + 'list,
{
    fn index(&self) -> Option<usize> {
        self.curr?;
        Some(self.index)
    }

    fn move_next(&mut self) {
        match self.curr.take() {
            // Advance the cursor to the current node's next element.
            Some(curr) => unsafe {
                self.curr = T::links(curr).as_ref().next();
                self.index += 1;
            },
            // We have no current element --- move to the start of the list.
            None => {
                self.curr = self.list.head;
                self.index = 0;
            }
        }
    }

    fn move_prev(&mut self) {
        match self.curr.take() {
            // Advance the cursor to the current node's prev element.
            Some(curr) => unsafe {
                self.curr = T::links(curr).as_ref().prev();
                // this is saturating because the current node might be the 0th
                // and we might have set `self.curr` to `None`.
                self.index = self.index.saturating_sub(1);
            },
            // We have no current element --- move to the end of the list.
            None => {
                self.curr = self.list.tail;
                self.index = self.index.checked_sub(1).unwrap_or(self.list.len());
            }
        }
    }

    fn current(&self) -> Option<Pin<&T>> {
        // NOTE(eliza): in this case, we don't *need* to pin the reference,
        // because it's immutable and you can't move out of a shared
        // reference in safe code. but...it makes the API more consistent
        // with `front_mut` etc.
        self.curr.map(|node| unsafe { self.pin_node(node) })
    }

    fn peek_next(&self) -> Option<Pin<&T>> {
        self.next_link().map(|next| unsafe { self.pin_node(next) })
    }

    fn peek_prev(&self) -> Option<Pin<&T>> {
        self.prev_link().map(|prev| unsafe { self.pin_node(prev) })
    }

    #[inline(always)]
    fn next_link(&self) -> Link<T> {
        match self.curr {
            Some(curr) => unsafe { T::links(curr).as_ref().next() },
            None => self.list.head,
        }
    }

    #[inline(always)]
    fn prev_link(&self) -> Link<T> {
        match self.curr {
            Some(curr) => unsafe { T::links(curr).as_ref().prev() },
            None => self.list.tail,
        }
    }

    /// # Safety
    ///
    /// - `node` must point to an element currently in this list.
    unsafe fn pin_node(&self, node: NonNull<T>) -> Pin<&'list T> {
        // safety: elements in the list must be pinned while they are in the
        // list, so it is safe to construct a `pin` here provided that the
        // `Linked` trait's invariants are upheld.
        //
        // the lifetime of the returned reference inside the `Pin` is the
        // lifetime of the `CursorMut`'s borrow on the list, so the node ref
        // cannot outlive its referent, provided that `node` actually came from
        // this list (and it would be a violation of this function's safety
        // invariants if it did not).
        Pin::new_unchecked(node.as_ref())
    }
}

impl<'list, T, L> CursorCore<T, L>
where
    T: Linked<Links<T>> + ?Sized,
    L: Deref<Target = List<T>> + DerefMut + 'list,
{
    /// # Safety
    ///
    /// - `node` must point to an element currently in this list.
    unsafe fn pin_node_mut(&self, mut node: NonNull<T>) -> Pin<&'list mut T> {
        // safety: elements in the list must be pinned while they are in the
        // list, so it is safe to construct a `pin` here provided that the
        // `Linked` trait's invariants are upheld.
        //
        // the lifetime of the returned reference inside the `Pin` is the
        // lifetime of the `CursorMut`'s borrow on the list, so the node ref
        // cannot outlive its referent, provided that `node` actually came from
        // this list (and it would be a violation of this function's safety
        // invariants if it did not).
        Pin::new_unchecked(node.as_mut())
    }
}