cordyceps/stack.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
//! [Intrusive], singly-linked first-in, first-out (FIFO) stacks.
//!
//! See the documentation for the [`Stack`] and [`TransferStack`] types for
//! details.
//!
//! [intrusive]: crate#intrusive-data-structures
#![warn(missing_debug_implementations)]
use crate::{
loom::{
cell::UnsafeCell,
sync::atomic::{AtomicPtr, Ordering::*},
},
Linked,
};
use core::{
fmt,
marker::PhantomPinned,
ptr::{self, NonNull},
};
/// An [intrusive] lock-free singly-linked FIFO stack, where all entries
/// currently in the stack are consumed in a single atomic operation.
///
/// A transfer stack is perhaps the world's simplest lock-free concurrent data
/// structure. It provides two primary operations:
///
/// - [`TransferStack::push`], which appends an element to the end of the
/// transfer stack,
///
/// - [`TransferStack::take_all`], which atomically takes all elements currently
/// on the transfer stack and returns them as a new mutable [`Stack`].
///
/// These are both *O*(1) operations, although `push` performs a
/// compare-and-swap loop that may be retried if another producer concurrently
/// pushed an element.
///
/// In order to be part of a `TransferStack`, a type `T` must implement
/// the [`Linked`] trait for [`stack::Links<T>`](Links).
///
/// Pushing elements into a `TransferStack` takes ownership of those elements
/// through an owning [`Handle` type](Linked::Handle). Dropping a
/// [`TransferStack`] drops all elements currently linked into the stack.
///
/// A transfer stack is often useful in cases where a large number of resources
/// must be efficiently transferred from several producers to a consumer, such
/// as for reuse or cleanup. For example, a [`TransferStack`] can be used as the
/// "thread" (shared) free list in a [`mimalloc`-style sharded
/// allocator][mimalloc], with a mutable [`Stack`] used as the local
/// (unsynchronized) free list. When an allocation is freed from the same CPU
/// core that it was allocated on, it is pushed to the local free list, using an
/// unsynchronized mutable [`Stack::push`] operation. If an allocation is freed
/// from a different thread, it is instead pushed to that thread's shared free
/// list, a [`TransferStack`], using an atomic [`TransferStack::push`]
/// operation. New allocations are popped from the local unsynchronized free
/// list, and if the local free list is empty, the entire shared free list is
/// moved onto the local free list. This allows objects which do not leave the
/// CPU core they were allocated on to be both allocated and deallocated using
/// unsynchronized operations, and new allocations only perform an atomic
/// operation when the local free list is empty.
///
/// [intrusive]: crate#intrusive-data-structures
/// [mimalloc]: https://www.microsoft.com/en-us/research/uploads/prod/2019/06/mimalloc-tr-v1.pdf
pub struct TransferStack<T: Linked<Links<T>>> {
head: AtomicPtr<T>,
}
/// An [intrusive] singly-linked mutable FIFO stack.
///
/// This is a very simple implementation of a linked `Stack`, which provides
/// *O*(1) [`push`](Self::push) and [`pop`](Self::pop) operations. Items are
/// popped from the stack in the opposite order that they were pushed in.
///
/// A [`Stack`] also implements the [`Iterator`] trait, with the
/// [`Iterator::next`] method popping elements from the end of the stack.
///
/// In order to be part of a `Stack`, a type `T` must implement
/// the [`Linked`] trait for [`stack::Links<T>`](Links).
///
/// Pushing elements into a `Stack` takes ownership of those elements
/// through an owning [`Handle` type](Linked::Handle). Dropping a
/// `Stack` drops all elements currently linked into the stack.
///
/// [intrusive]: crate#intrusive-data-structures
pub struct Stack<T: Linked<Links<T>>> {
head: Option<NonNull<T>>,
}
/// Links to other nodes in a [`TransferStack`] or [`Stack`].
///
/// In order to be part of a [`Stack`] or [`TransferStack`], a type must contain
/// an instance of this type, and must implement the [`Linked`] trait for
/// `Links<Self>`.
pub struct Links<T> {
/// The next node in the queue.
next: UnsafeCell<Option<NonNull<T>>>,
/// Linked list links must always be `!Unpin`, in order to ensure that they
/// never recieve LLVM `noalias` annotations; see also
/// <https://github.com/rust-lang/rust/issues/63818>.
_unpin: PhantomPinned,
}
// === impl AtomicStack ===
impl<T> TransferStack<T>
where
T: Linked<Links<T>>,
{
/// Returns a new `TransferStack` with no elements.
#[cfg(not(loom))]
#[must_use]
pub const fn new() -> Self {
Self {
head: AtomicPtr::new(ptr::null_mut()),
}
}
/// Returns a new `TransferStack` with no elements.
#[cfg(loom)]
#[must_use]
pub fn new() -> Self {
Self {
head: AtomicPtr::new(ptr::null_mut()),
}
}
/// Pushes `element` onto the end of this `TransferStack`, taking ownership
/// of it.
///
/// This is an *O*(1) operation, although it performs a compare-and-swap
/// loop that may repeat if another producer is concurrently calling `push`
/// on the same `TransferStack`.
///
/// This takes ownership over `element` through its [owning `Handle`
/// type](Linked::Handle). If the `TransferStack` is dropped before the
/// pushed `element` is removed from the stack, the `element` will be dropped.
pub fn push(&self, element: T::Handle) {
let ptr = T::into_ptr(element);
test_trace!(?ptr, "TransferStack::push");
let links = unsafe { T::links(ptr).as_mut() };
debug_assert!(links.next.with(|next| unsafe { (*next).is_none() }));
let mut head = self.head.load(Relaxed);
loop {
test_trace!(?ptr, ?head, "TransferStack::push");
links.next.with_mut(|next| unsafe {
*next = NonNull::new(head);
});
match self
.head
.compare_exchange_weak(head, ptr.as_ptr(), AcqRel, Acquire)
{
Ok(_) => {
test_trace!(?ptr, ?head, "TransferStack::push -> pushed");
return;
}
Err(actual) => head = actual,
}
}
}
/// Takes all elements *currently* in this `TransferStack`, returning a new
/// mutable [`Stack`] containing those elements.
///
/// This is an *O*(1) operation which does not allocate memory. It will
/// never loop and does not spin.
#[must_use]
pub fn take_all(&self) -> Stack<T> {
let head = self.head.swap(ptr::null_mut(), AcqRel);
let head = NonNull::new(head);
Stack { head }
}
}
impl<T> Drop for TransferStack<T>
where
T: Linked<Links<T>>,
{
fn drop(&mut self) {
// The stack owns any entries that are still in the stack; ensure they
// are dropped before dropping the stack.
for entry in self.take_all() {
drop(entry);
}
}
}
impl<T> fmt::Debug for TransferStack<T>
where
T: Linked<Links<T>>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { head } = self;
f.debug_struct("TransferStack").field("head", head).finish()
}
}
// === impl Stack ===
impl<T> Stack<T>
where
T: Linked<Links<T>>,
{
/// Returns a new `Stack` with no elements in it.
#[must_use]
pub const fn new() -> Self {
Self { head: None }
}
/// Pushes `element` onto the end of this `Stack`, taking ownership
/// of it.
///
/// This is an *O*(1) operation that does not allocate memory. It will never
/// loop.
///
/// This takes ownership over `element` through its [owning `Handle`
/// type](Linked::Handle). If the `Stack` is dropped before the
/// pushed `element` is [`pop`](Self::pop)pped from the stack, the `element`
/// will be dropped.
pub fn push(&mut self, element: T::Handle) {
let ptr = T::into_ptr(element);
test_trace!(?ptr, ?self.head, "Stack::push");
unsafe {
// Safety: we have exclusive mutable access to the stack, and
// therefore can also mutate the stack's entries.
let links = T::links(ptr).as_mut();
links.next.with_mut(|next| {
debug_assert!((*next).is_none());
*next = self.head.replace(ptr);
})
}
}
/// Returns the element most recently [push](Self::push)ed to this `Stack`,
/// or `None` if the stack is empty.
///
/// This is an *O*(1) operation which does not allocate memory. It will
/// never loop and does not spin.
#[must_use]
pub fn pop(&mut self) -> Option<T::Handle> {
test_trace!(?self.head, "Stack::pop");
let head = self.head.take()?;
unsafe {
// Safety: we have exclusive ownership over this chunk of stack.
// advance the head link to the next node after the current one (if
// there is one).
self.head = T::links(head).as_mut().next.with_mut(|next| (*next).take());
test_trace!(?self.head, "Stack::pop -> popped");
// return the current node
Some(T::from_ptr(head))
}
}
/// Takes all elements *currently* in this `Stack`, returning a new
/// mutable `Stack` containing those elements.
///
/// This is an *O*(1) operation which does not allocate memory. It will
/// never loop and does not spin.
#[must_use]
pub fn take_all(&mut self) -> Self {
Self {
head: self.head.take(),
}
}
/// Returns `true` if this `Stack` is empty.
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.head.is_none()
}
}
impl<T> Drop for Stack<T>
where
T: Linked<Links<T>>,
{
fn drop(&mut self) {
// The stack owns any entries that are still in the stack; ensure they
// are dropped before dropping the stack.
for entry in self {
drop(entry);
}
}
}
impl<T> fmt::Debug for Stack<T>
where
T: Linked<Links<T>>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { head } = self;
f.debug_struct("Stack").field("head", head).finish()
}
}
impl<T> Iterator for Stack<T>
where
T: Linked<Links<T>>,
{
type Item = T::Handle;
fn next(&mut self) -> Option<Self::Item> {
self.pop()
}
}
/// # Safety
///
/// A `Stack` is `Send` if `T` is send, because moving it across threads
/// also implicitly moves any `T`s in the stack.
unsafe impl<T> Send for Stack<T>
where
T: Send,
T: Linked<Links<T>>,
{
}
unsafe impl<T> Sync for Stack<T>
where
T: Sync,
T: Linked<Links<T>>,
{
}
// === impl Links ===
impl<T> Links<T> {
/// Returns new [`TransferStack`] links.
#[cfg(not(loom))]
#[must_use]
pub const fn new() -> Self {
Self {
next: UnsafeCell::new(None),
_unpin: PhantomPinned,
}
}
/// Returns new [`TransferStack`] links.
#[cfg(loom)]
#[must_use]
pub fn new() -> Self {
Self {
next: UnsafeCell::new(None),
_unpin: PhantomPinned,
}
}
}
/// # Safety
///
/// Types containing [`Links`] may be `Send`: the pointers within the `Links` may
/// mutably alias another value, but the links can only be _accessed_ by the
/// owner of the [`TransferStack`] itself, because the pointers are private. As
/// long as [`TransferStack`] upholds its own invariants, `Links` should not
/// make a type `!Send`.
unsafe impl<T: Send> Send for Links<T> {}
/// # Safety
///
/// Types containing [`Links`] may be `Send`: the pointers within the `Links` may
/// mutably alias another value, but the links can only be _accessed_ by the
/// owner of the [`TransferStack`] itself, because the pointers are private. As
/// long as [`TransferStack`] upholds its own invariants, `Links` should not
/// make a type `!Send`.
unsafe impl<T: Sync> Sync for Links<T> {}
impl<T> fmt::Debug for Links<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("transfer_stack::Links { ... }")
}
}
#[cfg(test)]
mod loom {
use super::*;
use crate::loom::{
self,
sync::{
atomic::{AtomicUsize, Ordering},
Arc,
},
thread,
};
use test_util::Entry;
#[test]
fn multithreaded_push() {
const PUSHES: i32 = 2;
loom::model(|| {
let stack = Arc::new(TransferStack::new());
let threads = Arc::new(AtomicUsize::new(2));
let thread1 = thread::spawn({
let stack = stack.clone();
let threads = threads.clone();
move || {
Entry::push_all(&stack, 1, PUSHES);
threads.fetch_sub(1, Ordering::Relaxed);
}
});
let thread2 = thread::spawn({
let stack = stack.clone();
let threads = threads.clone();
move || {
Entry::push_all(&stack, 2, PUSHES);
threads.fetch_sub(1, Ordering::Relaxed);
}
});
let mut seen = Vec::new();
loop {
seen.extend(stack.take_all().map(|entry| entry.val));
if threads.load(Ordering::Relaxed) == 0 {
break;
}
thread::yield_now();
}
seen.extend(stack.take_all().map(|entry| entry.val));
seen.sort();
assert_eq!(seen, vec![10, 11, 20, 21]);
thread1.join().unwrap();
thread2.join().unwrap();
})
}
#[test]
fn multithreaded_pop() {
const PUSHES: i32 = 2;
loom::model(|| {
let stack = Arc::new(TransferStack::new());
let thread1 = thread::spawn({
let stack = stack.clone();
move || Entry::push_all(&stack, 1, PUSHES)
});
let thread2 = thread::spawn({
let stack = stack.clone();
move || Entry::push_all(&stack, 2, PUSHES)
});
let thread3 = thread::spawn({
let stack = stack.clone();
move || stack.take_all().map(|entry| entry.val).collect::<Vec<_>>()
});
let seen_thread0 = stack.take_all().map(|entry| entry.val).collect::<Vec<_>>();
let seen_thread3 = thread3.join().unwrap();
thread1.join().unwrap();
thread2.join().unwrap();
let seen_thread0_final = stack.take_all().map(|entry| entry.val).collect::<Vec<_>>();
let mut all = dbg!(seen_thread0);
all.extend(dbg!(seen_thread3));
all.extend(dbg!(seen_thread0_final));
all.sort();
assert_eq!(all, vec![10, 11, 20, 21]);
})
}
#[test]
fn doesnt_leak() {
const PUSHES: i32 = 2;
loom::model(|| {
let stack = Arc::new(TransferStack::new());
let thread1 = thread::spawn({
let stack = stack.clone();
move || Entry::push_all(&stack, 1, PUSHES)
});
let thread2 = thread::spawn({
let stack = stack.clone();
move || Entry::push_all(&stack, 2, PUSHES)
});
tracing::info!("dropping stack");
drop(stack);
thread1.join().unwrap();
thread2.join().unwrap();
})
}
#[test]
fn take_all_doesnt_leak() {
const PUSHES: i32 = 2;
loom::model(|| {
let stack = Arc::new(TransferStack::new());
let thread1 = thread::spawn({
let stack = stack.clone();
move || Entry::push_all(&stack, 1, PUSHES)
});
let thread2 = thread::spawn({
let stack = stack.clone();
move || Entry::push_all(&stack, 2, PUSHES)
});
thread1.join().unwrap();
thread2.join().unwrap();
let take_all = stack.take_all();
tracing::info!("dropping stack");
drop(stack);
tracing::info!("dropping take_all");
drop(take_all);
})
}
#[test]
fn take_all_doesnt_leak_racy() {
const PUSHES: i32 = 2;
loom::model(|| {
let stack = Arc::new(TransferStack::new());
let thread1 = thread::spawn({
let stack = stack.clone();
move || Entry::push_all(&stack, 1, PUSHES)
});
let thread2 = thread::spawn({
let stack = stack.clone();
move || Entry::push_all(&stack, 2, PUSHES)
});
let take_all = stack.take_all();
thread1.join().unwrap();
thread2.join().unwrap();
tracing::info!("dropping stack");
drop(stack);
tracing::info!("dropping take_all");
drop(take_all);
})
}
#[test]
fn unsync() {
loom::model(|| {
let mut stack = Stack::<Entry>::new();
stack.push(Entry::new(1));
stack.push(Entry::new(2));
stack.push(Entry::new(3));
let mut take_all = stack.take_all();
for i in (1..=3).rev() {
assert_eq!(take_all.next().unwrap().val, i);
stack.push(Entry::new(10 + i));
}
let mut i = 11;
for entry in stack.take_all() {
assert_eq!(entry.val, i);
i += 1;
}
})
}
#[test]
fn unsync_doesnt_leak() {
loom::model(|| {
let mut stack = Stack::<Entry>::new();
stack.push(Entry::new(1));
stack.push(Entry::new(2));
stack.push(Entry::new(3));
})
}
}
#[cfg(test)]
mod test {
use super::{test_util::Entry, *};
#[test]
fn stack_is_send_sync() {
crate::util::assert_send_sync::<TransferStack<Entry>>()
}
#[test]
fn links_are_send_sync() {
crate::util::assert_send_sync::<Links<Entry>>()
}
}
#[cfg(test)]
mod test_util {
use super::*;
use crate::loom::alloc;
use core::pin::Pin;
#[pin_project::pin_project]
pub(super) struct Entry {
#[pin]
links: Links<Entry>,
pub(super) val: i32,
track: alloc::Track<()>,
}
unsafe impl Linked<Links<Self>> for Entry {
type Handle = Pin<Box<Entry>>;
fn into_ptr(handle: Pin<Box<Entry>>) -> NonNull<Self> {
unsafe { NonNull::from(Box::leak(Pin::into_inner_unchecked(handle))) }
}
unsafe fn from_ptr(ptr: NonNull<Self>) -> Self::Handle {
// Safety: if this function is only called by the linked list
// implementation (and it is not intended for external use), we can
// expect that the `NonNull` was constructed from a reference which
// was pinned.
//
// If other callers besides `List`'s internals were to call this on
// some random `NonNull<Entry>`, this would not be the case, and
// this could be constructing an erroneous `Pin` from a referent
// that may not be pinned!
Pin::new_unchecked(Box::from_raw(ptr.as_ptr()))
}
unsafe fn links(target: NonNull<Self>) -> NonNull<Links<Self>> {
let links = ptr::addr_of_mut!((*target.as_ptr()).links);
// Safety: it's fine to use `new_unchecked` here; if the pointer that we
// offset to the `links` field is not null (which it shouldn't be, as we
// received it as a `NonNull`), the offset pointer should therefore also
// not be null.
NonNull::new_unchecked(links)
}
}
impl Entry {
pub(super) fn new(val: i32) -> Pin<Box<Entry>> {
Box::pin(Entry {
links: Links::new(),
val,
track: alloc::Track::new(()),
})
}
pub(super) fn push_all(stack: &TransferStack<Self>, thread: i32, n: i32) {
for i in 0..n {
let entry = Self::new((thread * 10) + i);
stack.push(entry);
}
}
}
}