hal/memory/
virtual_address.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
use cfg_if::cfg_if;
use core::{
    fmt,
    ops::{Add, AddAssign, Sub, SubAssign},
};

/// Represents a virtual address. On architectures that have extra requirements for canonical virtual addresses
/// (e.g. x86_64 requiring correct sign-extension in high bits), these requirements are always enforced.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Default)]
#[repr(transparent)]
pub struct VAddr(usize);

impl VAddr {
    /// Construct a new `VAddr`. This will canonicalise the given value.
    pub const fn new(address: usize) -> VAddr {
        VAddr(address).canonicalise()
    }

    pub const fn ptr<T>(self) -> *const T {
        self.0 as *const T
    }

    pub const fn mut_ptr<T>(self) -> *mut T {
        self.0 as *mut T
    }

    /*
     * How we canonicalise addresses is architecture-specific, but has leaked into `hal` to make the types
     * simpler to use. We enforce whatever requirements are needed for the target architecture.
     */
    cfg_if! {
        if #[cfg(any(target_arch = "x86_64", feature = "platform_rv64_virt"))] {
            /// Canonicalise this virtual address. On x86_64 and RV64-Sv48, that involves making
            /// sure that bits 48..64 are sign extended from bit 47.
            pub const fn canonicalise(self) -> VAddr {
                const SIGN_EXTENSION: usize = 0o177777_000_000_000_000_0000;
                VAddr((SIGN_EXTENSION * ((self.0 >> 47) & 0b1)) | (self.0 & ((1 << 48) - 1)))
            }
        } else if #[cfg(feature = "platform_mq_pro")] {
            /// Canonicalise this virtual address. On RV64-Sv39, that involves making
            /// sure that bits 39..64 are sign extended from bit 38.
            pub const fn canonicalise(self) -> VAddr {
                const SIGN_EXTENSION: usize = 0o177777_777_000_000_000_0000;
                VAddr((SIGN_EXTENSION * ((self.0 >> 38) & 0b1)) | (self.0 & ((1 << 39) - 1)))
            }
        } else {
            /// Canonicalise this virtual address. On this architecture, there are no extra requirements, and so we
            /// just return the address as is.
            pub const fn canonicalise(self) -> VAddr {
                self
            }
        }
    }

    /// Align this address to the given alignment, moving downwards if this is not already aligned. `align` must
    /// be `0` or a power-of-two.
    pub fn align_down(self, align: usize) -> VAddr {
        if align.is_power_of_two() {
            /*
             * E.g.
             *      align       =   0b00001000
             *      align-1     =   0b00000111
             *      !(align-1)  =   0b11111000
             *                             ^^^ Masks the address to the value below it with the
             *                                 correct alignment
             */
            VAddr(self.0 & !(align - 1))
        } else {
            assert!(align == 0);
            self
        }
    }

    /// Align this address to the given alignment, moving upwards if this is not already aligned. `align` must be
    /// `0` or a power-of-two.
    pub fn align_up(self, align: usize) -> VAddr {
        VAddr(self.0 + align - 1).align_down(align)
    }

    pub fn is_aligned(self, align: usize) -> bool {
        self.0 % align == 0
    }

    pub fn checked_add(self, rhs: usize) -> Option<Self> {
        Some(VAddr::new(self.0.checked_add(rhs)?))
    }

    pub fn checked_sub(self, rhs: usize) -> Option<Self> {
        Some(VAddr::new(self.0.checked_sub(rhs)?))
    }
}

impl fmt::LowerHex for VAddr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:#x}", self.0)
    }
}

impl fmt::UpperHex for VAddr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:#X}", self.0)
    }
}

impl fmt::Debug for VAddr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "VAddr({:#x})", self)
    }
}

impl From<VAddr> for usize {
    fn from(address: VAddr) -> usize {
        address.0
    }
}

impl<T> From<*const T> for VAddr {
    fn from(ptr: *const T) -> VAddr {
        VAddr::new(ptr as usize)
    }
}

impl<T> From<*mut T> for VAddr {
    fn from(ptr: *mut T) -> VAddr {
        VAddr::new(ptr as usize)
    }
}

impl Add<usize> for VAddr {
    type Output = VAddr;

    fn add(self, rhs: usize) -> Self::Output {
        VAddr::new(self.0 + rhs)
    }
}

impl AddAssign<usize> for VAddr {
    fn add_assign(&mut self, rhs: usize) {
        // XXX: this ensures correctness as it goes through the `Add` implementation
        *self = *self + rhs;
    }
}

impl Sub<usize> for VAddr {
    type Output = VAddr;

    fn sub(self, rhs: usize) -> Self::Output {
        VAddr::new(self.0 - rhs)
    }
}

impl SubAssign<usize> for VAddr {
    fn sub_assign(&mut self, rhs: usize) {
        // XXX: this ensures correctness as it goes through the `Sub` implementation
        *self = *self - rhs;
    }
}