kernel/
pci.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
use crate::object::event::Event;
use alloc::{collections::BTreeMap, sync::Arc};
use pci_types::{
    capability::{MsiCapability, MsixCapability, PciCapability},
    device_type::DeviceType,
    Bar,
    BaseClass,
    ConfigRegionAccess,
    DeviceId,
    DeviceRevision,
    EndpointHeader,
    HeaderType,
    Interface,
    PciAddress,
    PciHeader,
    SubClass,
    VendorId,
    MAX_BARS,
};
use tracing::info;

#[derive(Clone, Debug)]
pub struct PciDevice {
    pub vendor_id: VendorId,
    pub device_id: DeviceId,
    pub revision: DeviceRevision,
    pub class: BaseClass,
    pub sub_class: SubClass,
    pub interface: Interface,
    pub bars: [Option<Bar>; MAX_BARS],
    pub interrupt_event: Option<Arc<Event>>,
}

#[derive(Clone, Debug)]
pub struct PciInfo {
    pub devices: BTreeMap<PciAddress, PciDevice>,
}

pub trait PciInterruptConfigurator {
    /// Create an `Event` that is signalled when an interrupt arrives from the specified PCI
    /// device. This is used when the device does not support MSI or MSI-X interrupts. The event
    /// may be triggered when the device has not actually received an interrupt, due to interrupt
    /// pin sharing in the legacy system, and so receivers must be resilient to spurious events.
    fn configure_legacy(&self, function: PciAddress, pin: u8) -> Arc<Event>;

    /// Create an `Event` that is signalled when an interrupt arrives from the specified PCI
    /// device. The device must support configuration of its interrupts via the passed MSI
    /// capability.
    fn configure_msi(&self, function: PciAddress, msi: &mut MsiCapability) -> Arc<Event>;

    /// Create an `Event` that is signalled when an interrupt arrives from the specified PCI
    /// device. The device must support configuration of its interrupts via the passed MSI-X
    /// capability.
    fn configure_msix(&self, function: PciAddress, table_bar: Bar, msix: &mut MsixCapability) -> Arc<Event>;
}

pub struct PciResolver<A>
where
    A: ConfigRegionAccess + PciInterruptConfigurator,
{
    access: A,
    info: PciInfo,
}

impl<A> PciResolver<A>
where
    A: ConfigRegionAccess + PciInterruptConfigurator,
{
    pub fn resolve(access: A) -> (A, PciInfo) {
        let mut resolver = Self { access, info: PciInfo { devices: BTreeMap::new() } };

        /*
         * If the device at 0:0:0:0 has multiple functions, there are multiple PCI host controllers, so we need to
         * check all the functions.
         */
        if PciHeader::new(PciAddress::new(0, 0, 0, 0)).has_multiple_functions(&resolver.access) {
            for bus in 0..8 {
                resolver.check_bus(bus);
            }
        } else {
            resolver.check_bus(0);
        }

        (resolver.access, resolver.info)
    }

    fn check_bus(&mut self, bus: u8) {
        for device in 0..32 {
            self.check_device(bus, device);
        }
    }

    fn check_device(&mut self, bus: u8, device: u8) {
        let address = PciAddress::new(0, bus, device, 0);
        self.check_function(bus, device, 0);

        let header = PciHeader::new(address);
        if header.has_multiple_functions(&self.access) {
            /*
             * The device is multi-function. We need to check the rest.
             */
            for function in 1..8 {
                self.check_function(bus, device, function);
            }
        }
    }

    fn check_function(&mut self, bus: u8, device: u8, function: u8) {
        let address = PciAddress::new(0, bus, device, function);
        let header = PciHeader::new(address);
        let (vendor_id, device_id) = header.id(&self.access);
        let (revision, class, sub_class, interface) = header.revision_and_class(&self.access);

        if vendor_id == 0xffff {
            return;
        }

        info!(
            "Found PCI device (bus={}, device={}, function={}): (vendor = {:#x}, device = {:#x}) -> {:?}",
            bus,
            device,
            function,
            vendor_id,
            device_id,
            DeviceType::from((class, sub_class))
        );

        match header.header_type(&self.access) {
            HeaderType::Endpoint => {
                let endpoint_header = EndpointHeader::from_header(header, &self.access).unwrap();
                let bars = {
                    let mut bars = [None; 6];

                    let mut skip_next = false;
                    for i in 0..6 {
                        if skip_next {
                            continue;
                        }

                        let bar = endpoint_header.bar(i, &self.access);
                        skip_next = match bar {
                            Some(Bar::Memory64 { .. }) => true,
                            _ => false,
                        };
                        bars[i as usize] = bar;
                    }

                    bars
                };

                /*
                 * Create an event that is triggered when an interrupt arrives for the PCI device.
                 * We try to use MSI or MSI-X if the device supports it, otherwise we have to use
                 * the shared interrupt pins.
                 */
                let interrupt_event = endpoint_header
                    .capabilities(&self.access)
                    .find_map(|capability| match capability {
                        PciCapability::Msi(mut msi) => Some(self.access.configure_msi(address, &mut msi)),
                        PciCapability::MsiX(mut msix) => {
                            let table_bar = bars[msix.table_bar() as usize].unwrap();
                            Some(self.access.configure_msix(address, table_bar, &mut msix))
                        }
                        _ => None,
                    })
                    .or_else(|| {
                        /*
                         * If the device does not support MSI or MSI-X, we're forced to use the
                         * legacy interrupt pins.
                         */
                        let (pin, _) = endpoint_header.interrupt(&self.access);
                        match pin {
                            0x00 => {
                                // Device does not support interrupts of any kind
                                None
                            }
                            0x01..0x05 => Some(self.access.configure_legacy(address, pin)),
                            _ => panic!("Invalid legacy interrupt pin!"),
                        }
                    });

                self.info.devices.insert(
                    address,
                    PciDevice {
                        vendor_id,
                        device_id,
                        revision,
                        class,
                        sub_class,
                        interface,
                        bars,
                        interrupt_event,
                    },
                );
            }

            HeaderType::PciPciBridge => {
                // TODO: call check_bus on the bridge's secondary bus number
                todo!()
            }

            HeaderType::CardBusBridge => {
                // TODO: what do we even do with these?
                todo!()
            }

            reserved => panic!("PCI function has reserved header type: {:?}", reserved),
        }
    }
}