maitake_sync/
mutex.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
//! An asynchronous [mutual exclusion lock].
//!
//! See the documentation on the [`Mutex`] type for details.
//!
//! [mutual exclusion lock]: https://en.wikipedia.org/wiki/Mutual_exclusion
use crate::{
    loom::cell::{MutPtr, UnsafeCell},
    util::fmt,
    wait_queue::{self, WaitQueue},
};
use core::{
    future::Future,
    ops::{Deref, DerefMut},
    pin::Pin,
    task::{Context, Poll},
};
use pin_project::pin_project;

#[cfg(test)]
mod tests;

/// An asynchronous [mutual exclusion lock][mutex] for protecting shared data.
///
/// The data can only be accessed through the [RAII guards] returned
/// from [`lock`] and [`try_lock`], which guarantees that the data is only ever
/// accessed when the mutex is locked.
///
/// # Comparison With Other Mutices
///
/// This is an *asynchronous* mutex. When the shared data is locked, the
/// [`lock`] method will wait by causing the current [task] to yield until the
/// shared data is available. This is in contrast to *blocking* mutices, such as
/// [`std::sync::Mutex`], which wait by blocking the current thread[^1], or
/// *spinlock* based mutices, such as [`spin::Mutex`], which wait by spinning
/// in a busy loop.
///
/// The [`futures-util`] crate also provides an implementation of an asynchronous
/// mutex, [`futures_util::lock::Mutex`]. However, this mutex requires the Rust
/// standard library, and is thus unsuitable for use in environments where the
/// standard library is unavailable. In addition, the `futures-util` mutex
/// requires an additional allocation for every task that is waiting to acquire
/// the lock, while `maitake`'s mutex is based on an [intrusive linked list],
/// and therefore can be used without allocation[^2]. This makes `maitake`'s
/// mutex suitable for environments where heap allocations must be minimized or
/// cannot be used at all.
///
/// In addition, this is a [fairly queued] mutex. This means that the lock is
/// always acquired in a first-in, first-out order — if a task acquires
/// and then releases the lock, and then wishes to acquire the lock again, it
/// will not acquire the lock until every other task ahead of it in the queue
/// has had a chance to lock the shared data. Again, this is in contrast to
/// [`std::sync::Mutex`], where fairness depends on the underlying OS' locking
/// primitives; and [`spin::Mutex`] and [`futures_util::lock::Mutex`], which
/// will never guarantee fairness.
///
/// Finally, this mutex does not implement [poisoning][^3], unlike
/// [`std::sync::Mutex`].
///
/// [^1]: And therefore require an operating system to manage threading.
///
/// [^2]: The [tasks](core::task) themselves must, of course, be stored
///     somewhere, but this need not be a heap allocation in systems with a
///     fixed set of statically-allocated tasks. And, when tasks *are*
///     heap-allocated, these allocations [need not be provided by
///     `liballoc`][storage].
///
/// [^3]: In fact, this mutex _cannot_ implement poisoning, as poisoning
///     requires support for unwinding, and [`maitake` assumes that panics are
///     invariably fatal][no-unwinding].
///
/// [mutex]: https://en.wikipedia.org/wiki/Mutual_exclusion
/// [RAII guards]: MutexGuard
/// [`lock`]: Self::lock
/// [`try_lock`]: Self::try_lock
/// [task]: core::task
/// [fairly queued]: https://en.wikipedia.org/wiki/Unbounded_nondeterminism#Fairness
/// [`std::sync::Mutex`]: https://doc.rust-lang.org/stable/std/sync/struct.Mutex.html
/// [`spin::Mutex`]: crate::spin::Mutex
/// [`futures-util`]: https://crates.io/crate/futures-util
/// [`futures_util::lock::Mutex`]: https://docs.rs/futures-util/latest/futures_util/lock/struct.Mutex.html
/// [intrusive linked list]: crate::WaitQueue#implementation-notes
/// [poisoning]: https://doc.rust-lang.org/stable/std/sync/struct.Mutex.html#poisoning
// for some reason, intra-doc links don't work in footnotes?
/// [storage]: https://mycelium.elizas.website/maitake/task/trait.Storage.html
/// [no-unwinding]: https://mycelium.elizas.website/maitake/index.html#maitake-does-not-support-unwinding

pub struct Mutex<T: ?Sized> {
    wait: WaitQueue,
    data: UnsafeCell<T>,
}

/// An [RAII] implementation of a "scoped lock" of a [`Mutex`]. When this
/// structure is dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`](#impl-Deref) and [`DerefMut`](#impl-Deref) implementations.
///
/// This guard can be held across any `.await` point, as it implements
/// [`Send`].
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
/// [RAII]: https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
#[must_use = "if unused, the Mutex will immediately unlock"]
pub struct MutexGuard<'a, T: ?Sized> {
    /// /!\ WARNING: semi-load-bearing drop order /!\
    ///
    /// This struct's field ordering is important.
    data: MutPtr<T>,
    _wake: WakeOnDrop<'a, T>,
}

/// A [future] returned by the [`Mutex::lock`] method.
///
/// [future]: core::future::Future
#[must_use = "futures do nothing unless `.await`ed or `poll`ed"]
#[pin_project]
#[derive(Debug)]
pub struct Lock<'a, T: ?Sized> {
    #[pin]
    wait: wait_queue::Wait<'a>,
    mutex: &'a Mutex<T>,
}

/// This is used in order to ensure that the wakeup is performed only *after*
/// the data ptr is dropped, in order to keep `loom` happy.
struct WakeOnDrop<'a, T: ?Sized>(&'a Mutex<T>);

// === impl Mutex ===

impl<T> Mutex<T> {
    loom_const_fn! {
        /// Returns a new `Mutex` protecting the provided `data`.
        ///
        /// The returned `Mutex` will be in the unlocked state and is ready for
        /// use.
        ///
        /// # Examples
        ///
        /// ```
        /// use maitake_sync::Mutex;
        ///
        /// let lock = Mutex::new(42);
        /// ```
        ///
        /// As this is a `const fn`, it may be used in a `static` initializer:
        /// ```
        /// use maitake_sync::Mutex;
        ///
        /// static GLOBAL_LOCK: Mutex<usize> = Mutex::new(42);
        /// ```
        #[must_use]
        pub fn new(data: T) -> Self {
            Self {
                // The queue must start with a single stored wakeup, so that the
                // first task that tries to acquire the lock will succeed
                // immediately.
                wait: WaitQueue::new_woken(),
                data: UnsafeCell::new(data),
            }
        }
    }
}

impl<T: ?Sized> Mutex<T> {
    /// Locks this mutex.
    ///
    /// This returns a [`Lock`] future that will wait until no other task is
    /// accessing the shared data. If the shared data is not locked, this future
    /// will complete immediately. When the lock has been acquired, this future
    /// will return a [`MutexGuard`].
    ///
    /// # Examples
    ///
    /// ```
    /// use maitake_sync::Mutex;
    ///
    /// async fn example() {
    ///     let mutex = Mutex::new(1);
    ///
    ///     let mut guard = mutex.lock().await;
    ///     *guard = 2;
    /// }
    /// ```
    pub fn lock(&self) -> Lock<'_, T> {
        Lock {
            wait: self.wait.wait(),
            mutex: self,
        }
    }

    /// Attempts to lock the mutex without waiting, returning `None` if the
    /// mutex is already locked locked.
    ///
    /// # Returns
    ///
    /// - `Some(`[`MutexGuard`])` if the mutex was not already locked
    /// - `None` if the mutex is currently locked and locking it would require
    ///   waiting
    ///
    /// # Examples
    ///
    /// ```
    /// use maitake_sync::Mutex;
    /// # async fn dox() -> Option<()> {
    ///
    /// let mutex = Mutex::new(1);
    ///
    /// let n = mutex.try_lock()?;
    /// assert_eq!(*n, 1);
    /// # Some(())
    /// # }
    /// ```
    pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
        match self.wait.try_wait() {
            Poll::Pending => None,
            Poll::Ready(Ok(_)) => Some(unsafe {
                // safety: we have just acquired the lock
                self.guard()
            }),
            Poll::Ready(Err(_)) => unsafe {
                unreachable_unchecked!("`Mutex` never calls `WaitQueue::close`")
            },
        }
    }

    /// Constructs a new `MutexGuard` for this `Mutex`.
    ///
    /// # Safety
    ///
    /// This may only be called once a lock has been acquired.
    unsafe fn guard(&self) -> MutexGuard<'_, T> {
        MutexGuard {
            _wake: WakeOnDrop(self),
            data: self.data.get_mut(),
        }
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let Self { data: _, wait } = self;
        f.debug_struct("Mutex")
            .field("data", &fmt::opt(&self.try_lock()).or_else("<locked>"))
            .field("wait", wait)
            .finish()
    }
}

unsafe impl<T> Send for Mutex<T> where T: Send {}
unsafe impl<T> Sync for Mutex<T> where T: Send {}

// === impl Lock ===

impl<'a, T> Future for Lock<'a, T> {
    type Output = MutexGuard<'a, T>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();

        match this.wait.poll(cx) {
            Poll::Ready(Ok(())) => {}
            Poll::Ready(Err(_)) => unsafe {
                unreachable_unchecked!("`Mutex` never calls `WaitQueue::close`")
            },
            Poll::Pending => return Poll::Pending,
        }

        let guard = unsafe {
            // safety: we have just acquired the lock.
            this.mutex.guard()
        };
        Poll::Ready(guard)
    }
}

// === impl MutexGuard ===

impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &Self::Target {
        unsafe {
            // safety: we are holding the lock
            &*self.data.deref()
        }
    }
}

impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe {
            // safety: we are holding the lock
            self.data.deref()
        }
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.deref().fmt(f)
    }
}

unsafe impl<T: ?Sized> Send for MutexGuard<'_, T> where T: Send {}
unsafe impl<T: ?Sized> Sync for MutexGuard<'_, T> where T: Send + Sync {}

impl<'a, T: ?Sized> Drop for WakeOnDrop<'a, T> {
    fn drop(&mut self) {
        self.0.wait.wake()
    }
}

feature! {
    #![feature = "alloc"]

    use alloc::sync::Arc;

    /// An [RAII] implementation of a "scoped lock" of a [`Mutex`]. When this
    /// structure is dropped (falls out of scope), the lock will be unlocked.
    ///
    /// This type is similar to the [`MutexGuard`] type, but it is only returned
    /// by a [`Mutex`] that is wrapped in an an [`Arc`]. Instead of borrowing
    /// the [`Mutex`], this guard holds an [`Arc`] clone of the [`Mutex`],
    /// incrementing its reference count. Therefore, this type can outlive the
    /// [`Mutex`] that created it, and it is valid for the `'static` lifetime.
    ///
    /// The data protected by the mutex can be accessed through this guard via its
    /// [`Deref`](#impl-Deref) and [`DerefMut`](#impl-Deref) implementations.
    ///
    /// This guard can be held across any `.await` point, as it implements
    /// [`Send`].
    ///
    /// This structure is created by the [`lock_owned`] and [`try_lock_owned`]
    /// methods on  [`Mutex`].
    ///
    /// [`lock_owned`]: Mutex::lock_owned
    /// [`try_lock_owned`]: Mutex::try_lock_owned
    /// [RAII]: https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
    #[must_use = "if unused, the Mutex will immediately unlock"]
    pub struct OwnedMutexGuard<T: ?Sized> {
        /// /!\ WARNING: semi-load-bearing drop order /!\
        ///
        /// This struct's field ordering is important.
        data: MutPtr<T>,
        _wake: WakeArcOnDrop<T>,
    }

    impl<T: ?Sized> Mutex<T> {

        /// Locks this mutex, returning an [owned RAII guard][`OwnedMutexGuard`].
        ///
        /// This function will that will wait until no other task is
        /// accessing the shared data. If the shared data is not locked, this future
        /// will complete immediately. When the lock has been acquired, this future
        /// will return a [`OwnedMutexGuard`].
        ///
        /// This method is similar to [`Mutex::lock`], except that (rather
        /// than borrowing the [`Mutex`]) the returned  guard owns an [`Arc`]
        /// clone, incrememting its reference count. Therefore, this method is
        /// only available when the [`Mutex`] is wrapped in an [`Arc`], and the
        /// returned guard is valid for the `'static` lifetime.
        ///
        /// # Examples
        ///
        /// ```
        /// # // since we are targeting no-std, it makes more sense to use `alloc`
        /// # // in these examples, rather than `std`...but i don't want to make
        /// # // the tests actually `#![no_std]`...
        /// # use std as alloc;
        /// use maitake_sync::Mutex;
        /// use alloc::sync::Arc;
        ///
        /// # fn main() {
        /// async fn example() {
        ///     let mutex = Arc::new(Mutex::new(1));
        ///
        ///     let mut guard = mutex.clone().lock_owned().await;
        ///     *guard = 2;
        ///     # drop(mutex);
        /// }
        /// # }
        /// ```
        pub async fn lock_owned(self: Arc<Self>) -> OwnedMutexGuard<T> {
            self.wait.wait().await.unwrap();
            unsafe {
                // safety: we have just acquired the lock
                self.owned_guard()
            }
        }

        /// Attempts this mutex without waiting, returning an [owned RAII
        /// guard][`OwnedMutexGuard`], or `Err` if the mutex is already locked.
        ///
        /// This method is similar to [`Mutex::try_lock`], except that (rather
        /// than borrowing the [`Mutex`]) the returned guard owns an [`Arc`]
        /// clone, incrememting its reference count. Therefore, this method is
        /// only available when the [`Mutex`] is wrapped in an [`Arc`], and the
        /// returned guard is valid for the `'static` lifetime.
        ///
        /// # Returns
        ///
        /// - `Ok(`[`OwnedMutexGuard`])` if the mutex was not already locked
        /// - `Err(Arc<Mutex<T>>)` if the mutex is currently locked and locking
        ///   it would require waiting.
        ///
        ///   This returns an [`Err`] rather than [`None`] so that the same
        ///   [`Arc`] clone may be reused (such as by calling `try_lock_owned`
        ///   again) without having to decrement and increment the reference
        ///   count again.
        ///
        /// # Examples
        ///
        /// ```
        /// # // since we are targeting no-std, it makes more sense to use `alloc`
        /// # // in these examples, rather than `std`...but i don't want to make
        /// # // the tests actually `#![no_std]`...
        /// # use std as alloc;
        /// use maitake_sync::Mutex;
        /// use alloc::sync::Arc;
        ///
        /// # fn main() {
        /// let mutex = Arc::new(Mutex::new(1));
        ///
        /// if let Ok(guard) = mutex.clone().try_lock_owned() {
        ///     assert_eq!(*guard, 1);
        /// }
        /// # }
        /// ```
        pub fn try_lock_owned(self: Arc<Self>) -> Result<OwnedMutexGuard<T>, Arc<Self>> {
            match self.wait.try_wait() {
                Poll::Pending => Err(self),
                Poll::Ready(Ok(_)) => Ok(unsafe {
                    // safety: we have just acquired the lock
                    self.owned_guard()
                }),
                Poll::Ready(Err(_)) => unsafe {
                    unreachable_unchecked!("`Mutex` never calls `WaitQueue::close`")
                },
            }
        }

        /// Constructs a new `OwnedMutexGuard` for this `Mutex`.
        ///
        /// # Safety
        ///
        /// This may only be called once a lock has been acquired.
        unsafe fn owned_guard(self: Arc<Self>) -> OwnedMutexGuard<T> {
            let data = self.data.get_mut();
            OwnedMutexGuard {
                _wake: WakeArcOnDrop(self),
                data,
            }
        }
    }

    struct WakeArcOnDrop<T: ?Sized>(Arc<Mutex<T>>);

    // === impl OwnedMutexGuard ===

    impl<T: ?Sized> Deref for OwnedMutexGuard<T> {
        type Target = T;

        #[inline]
        fn deref(&self) -> &Self::Target {
            unsafe {
                // safety: we are holding the lock
                &*self.data.deref()
            }
        }
    }

    impl<T: ?Sized> DerefMut for OwnedMutexGuard<T> {
        #[inline]
        fn deref_mut(&mut self) -> &mut Self::Target {
            unsafe {
                // safety: we are holding the lock
                self.data.deref()
            }
        }
    }

    impl<T: ?Sized + fmt::Debug> fmt::Debug for OwnedMutexGuard<T> {
        #[inline]
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            self.deref().fmt(f)
        }
    }

    unsafe impl<T: ?Sized> Send for OwnedMutexGuard<T> where T: Send {}
    unsafe impl<T: ?Sized> Sync for OwnedMutexGuard<T> where T: Send + Sync {}

    impl<T: ?Sized> Drop for WakeArcOnDrop<T> {
        fn drop(&mut self) {
            self.0.wait.wake()
        }
    }
}