maitake_sync/mutex.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//! An asynchronous [mutual exclusion lock].
//!
//! See the documentation on the [`Mutex`] type for details.
//!
//! [mutual exclusion lock]: https://en.wikipedia.org/wiki/Mutual_exclusion
use crate::{
loom::cell::{MutPtr, UnsafeCell},
util::fmt,
wait_queue::{self, WaitQueue},
};
use core::{
future::Future,
ops::{Deref, DerefMut},
pin::Pin,
task::{Context, Poll},
};
use pin_project::pin_project;
#[cfg(test)]
mod tests;
/// An asynchronous [mutual exclusion lock][mutex] for protecting shared data.
///
/// The data can only be accessed through the [RAII guards] returned
/// from [`lock`] and [`try_lock`], which guarantees that the data is only ever
/// accessed when the mutex is locked.
///
/// # Comparison With Other Mutices
///
/// This is an *asynchronous* mutex. When the shared data is locked, the
/// [`lock`] method will wait by causing the current [task] to yield until the
/// shared data is available. This is in contrast to *blocking* mutices, such as
/// [`std::sync::Mutex`], which wait by blocking the current thread[^1], or
/// *spinlock* based mutices, such as [`spin::Mutex`], which wait by spinning
/// in a busy loop.
///
/// The [`futures-util`] crate also provides an implementation of an asynchronous
/// mutex, [`futures_util::lock::Mutex`]. However, this mutex requires the Rust
/// standard library, and is thus unsuitable for use in environments where the
/// standard library is unavailable. In addition, the `futures-util` mutex
/// requires an additional allocation for every task that is waiting to acquire
/// the lock, while `maitake`'s mutex is based on an [intrusive linked list],
/// and therefore can be used without allocation[^2]. This makes `maitake`'s
/// mutex suitable for environments where heap allocations must be minimized or
/// cannot be used at all.
///
/// In addition, this is a [fairly queued] mutex. This means that the lock is
/// always acquired in a first-in, first-out order — if a task acquires
/// and then releases the lock, and then wishes to acquire the lock again, it
/// will not acquire the lock until every other task ahead of it in the queue
/// has had a chance to lock the shared data. Again, this is in contrast to
/// [`std::sync::Mutex`], where fairness depends on the underlying OS' locking
/// primitives; and [`spin::Mutex`] and [`futures_util::lock::Mutex`], which
/// will never guarantee fairness.
///
/// Finally, this mutex does not implement [poisoning][^3], unlike
/// [`std::sync::Mutex`].
///
/// [^1]: And therefore require an operating system to manage threading.
///
/// [^2]: The [tasks](core::task) themselves must, of course, be stored
/// somewhere, but this need not be a heap allocation in systems with a
/// fixed set of statically-allocated tasks. And, when tasks *are*
/// heap-allocated, these allocations [need not be provided by
/// `liballoc`][storage].
///
/// [^3]: In fact, this mutex _cannot_ implement poisoning, as poisoning
/// requires support for unwinding, and [`maitake` assumes that panics are
/// invariably fatal][no-unwinding].
///
/// [mutex]: https://en.wikipedia.org/wiki/Mutual_exclusion
/// [RAII guards]: MutexGuard
/// [`lock`]: Self::lock
/// [`try_lock`]: Self::try_lock
/// [task]: core::task
/// [fairly queued]: https://en.wikipedia.org/wiki/Unbounded_nondeterminism#Fairness
/// [`std::sync::Mutex`]: https://doc.rust-lang.org/stable/std/sync/struct.Mutex.html
/// [`spin::Mutex`]: crate::spin::Mutex
/// [`futures-util`]: https://crates.io/crate/futures-util
/// [`futures_util::lock::Mutex`]: https://docs.rs/futures-util/latest/futures_util/lock/struct.Mutex.html
/// [intrusive linked list]: crate::WaitQueue#implementation-notes
/// [poisoning]: https://doc.rust-lang.org/stable/std/sync/struct.Mutex.html#poisoning
// for some reason, intra-doc links don't work in footnotes?
/// [storage]: https://mycelium.elizas.website/maitake/task/trait.Storage.html
/// [no-unwinding]: https://mycelium.elizas.website/maitake/index.html#maitake-does-not-support-unwinding
pub struct Mutex<T: ?Sized> {
wait: WaitQueue,
data: UnsafeCell<T>,
}
/// An [RAII] implementation of a "scoped lock" of a [`Mutex`]. When this
/// structure is dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`](#impl-Deref) and [`DerefMut`](#impl-Deref) implementations.
///
/// This guard can be held across any `.await` point, as it implements
/// [`Send`].
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
/// [RAII]: https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
#[must_use = "if unused, the Mutex will immediately unlock"]
pub struct MutexGuard<'a, T: ?Sized> {
/// /!\ WARNING: semi-load-bearing drop order /!\
///
/// This struct's field ordering is important.
data: MutPtr<T>,
_wake: WakeOnDrop<'a, T>,
}
/// A [future] returned by the [`Mutex::lock`] method.
///
/// [future]: core::future::Future
#[must_use = "futures do nothing unless `.await`ed or `poll`ed"]
#[pin_project]
#[derive(Debug)]
pub struct Lock<'a, T: ?Sized> {
#[pin]
wait: wait_queue::Wait<'a>,
mutex: &'a Mutex<T>,
}
/// This is used in order to ensure that the wakeup is performed only *after*
/// the data ptr is dropped, in order to keep `loom` happy.
struct WakeOnDrop<'a, T: ?Sized>(&'a Mutex<T>);
// === impl Mutex ===
impl<T> Mutex<T> {
loom_const_fn! {
/// Returns a new `Mutex` protecting the provided `data`.
///
/// The returned `Mutex` will be in the unlocked state and is ready for
/// use.
///
/// # Examples
///
/// ```
/// use maitake_sync::Mutex;
///
/// let lock = Mutex::new(42);
/// ```
///
/// As this is a `const fn`, it may be used in a `static` initializer:
/// ```
/// use maitake_sync::Mutex;
///
/// static GLOBAL_LOCK: Mutex<usize> = Mutex::new(42);
/// ```
#[must_use]
pub fn new(data: T) -> Self {
Self {
// The queue must start with a single stored wakeup, so that the
// first task that tries to acquire the lock will succeed
// immediately.
wait: WaitQueue::new_woken(),
data: UnsafeCell::new(data),
}
}
}
}
impl<T: ?Sized> Mutex<T> {
/// Locks this mutex.
///
/// This returns a [`Lock`] future that will wait until no other task is
/// accessing the shared data. If the shared data is not locked, this future
/// will complete immediately. When the lock has been acquired, this future
/// will return a [`MutexGuard`].
///
/// # Examples
///
/// ```
/// use maitake_sync::Mutex;
///
/// async fn example() {
/// let mutex = Mutex::new(1);
///
/// let mut guard = mutex.lock().await;
/// *guard = 2;
/// }
/// ```
pub fn lock(&self) -> Lock<'_, T> {
Lock {
wait: self.wait.wait(),
mutex: self,
}
}
/// Attempts to lock the mutex without waiting, returning `None` if the
/// mutex is already locked locked.
///
/// # Returns
///
/// - `Some(`[`MutexGuard`])` if the mutex was not already locked
/// - `None` if the mutex is currently locked and locking it would require
/// waiting
///
/// # Examples
///
/// ```
/// use maitake_sync::Mutex;
/// # async fn dox() -> Option<()> {
///
/// let mutex = Mutex::new(1);
///
/// let n = mutex.try_lock()?;
/// assert_eq!(*n, 1);
/// # Some(())
/// # }
/// ```
pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
match self.wait.try_wait() {
Poll::Pending => None,
Poll::Ready(Ok(_)) => Some(unsafe {
// safety: we have just acquired the lock
self.guard()
}),
Poll::Ready(Err(_)) => unsafe {
unreachable_unchecked!("`Mutex` never calls `WaitQueue::close`")
},
}
}
/// Constructs a new `MutexGuard` for this `Mutex`.
///
/// # Safety
///
/// This may only be called once a lock has been acquired.
unsafe fn guard(&self) -> MutexGuard<'_, T> {
MutexGuard {
_wake: WakeOnDrop(self),
data: self.data.get_mut(),
}
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { data: _, wait } = self;
f.debug_struct("Mutex")
.field("data", &fmt::opt(&self.try_lock()).or_else("<locked>"))
.field("wait", wait)
.finish()
}
}
unsafe impl<T> Send for Mutex<T> where T: Send {}
unsafe impl<T> Sync for Mutex<T> where T: Send {}
// === impl Lock ===
impl<'a, T> Future for Lock<'a, T> {
type Output = MutexGuard<'a, T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
match this.wait.poll(cx) {
Poll::Ready(Ok(())) => {}
Poll::Ready(Err(_)) => unsafe {
unreachable_unchecked!("`Mutex` never calls `WaitQueue::close`")
},
Poll::Pending => return Poll::Pending,
}
let guard = unsafe {
// safety: we have just acquired the lock.
this.mutex.guard()
};
Poll::Ready(guard)
}
}
// === impl MutexGuard ===
impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe {
// safety: we are holding the lock
&*self.data.deref()
}
}
}
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe {
// safety: we are holding the lock
self.data.deref()
}
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.deref().fmt(f)
}
}
unsafe impl<T: ?Sized> Send for MutexGuard<'_, T> where T: Send {}
unsafe impl<T: ?Sized> Sync for MutexGuard<'_, T> where T: Send + Sync {}
impl<'a, T: ?Sized> Drop for WakeOnDrop<'a, T> {
fn drop(&mut self) {
self.0.wait.wake()
}
}
feature! {
#![feature = "alloc"]
use alloc::sync::Arc;
/// An [RAII] implementation of a "scoped lock" of a [`Mutex`]. When this
/// structure is dropped (falls out of scope), the lock will be unlocked.
///
/// This type is similar to the [`MutexGuard`] type, but it is only returned
/// by a [`Mutex`] that is wrapped in an an [`Arc`]. Instead of borrowing
/// the [`Mutex`], this guard holds an [`Arc`] clone of the [`Mutex`],
/// incrementing its reference count. Therefore, this type can outlive the
/// [`Mutex`] that created it, and it is valid for the `'static` lifetime.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`](#impl-Deref) and [`DerefMut`](#impl-Deref) implementations.
///
/// This guard can be held across any `.await` point, as it implements
/// [`Send`].
///
/// This structure is created by the [`lock_owned`] and [`try_lock_owned`]
/// methods on [`Mutex`].
///
/// [`lock_owned`]: Mutex::lock_owned
/// [`try_lock_owned`]: Mutex::try_lock_owned
/// [RAII]: https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
#[must_use = "if unused, the Mutex will immediately unlock"]
pub struct OwnedMutexGuard<T: ?Sized> {
/// /!\ WARNING: semi-load-bearing drop order /!\
///
/// This struct's field ordering is important.
data: MutPtr<T>,
_wake: WakeArcOnDrop<T>,
}
impl<T: ?Sized> Mutex<T> {
/// Locks this mutex, returning an [owned RAII guard][`OwnedMutexGuard`].
///
/// This function will that will wait until no other task is
/// accessing the shared data. If the shared data is not locked, this future
/// will complete immediately. When the lock has been acquired, this future
/// will return a [`OwnedMutexGuard`].
///
/// This method is similar to [`Mutex::lock`], except that (rather
/// than borrowing the [`Mutex`]) the returned guard owns an [`Arc`]
/// clone, incrememting its reference count. Therefore, this method is
/// only available when the [`Mutex`] is wrapped in an [`Arc`], and the
/// returned guard is valid for the `'static` lifetime.
///
/// # Examples
///
/// ```
/// # // since we are targeting no-std, it makes more sense to use `alloc`
/// # // in these examples, rather than `std`...but i don't want to make
/// # // the tests actually `#![no_std]`...
/// # use std as alloc;
/// use maitake_sync::Mutex;
/// use alloc::sync::Arc;
///
/// # fn main() {
/// async fn example() {
/// let mutex = Arc::new(Mutex::new(1));
///
/// let mut guard = mutex.clone().lock_owned().await;
/// *guard = 2;
/// # drop(mutex);
/// }
/// # }
/// ```
pub async fn lock_owned(self: Arc<Self>) -> OwnedMutexGuard<T> {
self.wait.wait().await.unwrap();
unsafe {
// safety: we have just acquired the lock
self.owned_guard()
}
}
/// Attempts this mutex without waiting, returning an [owned RAII
/// guard][`OwnedMutexGuard`], or `Err` if the mutex is already locked.
///
/// This method is similar to [`Mutex::try_lock`], except that (rather
/// than borrowing the [`Mutex`]) the returned guard owns an [`Arc`]
/// clone, incrememting its reference count. Therefore, this method is
/// only available when the [`Mutex`] is wrapped in an [`Arc`], and the
/// returned guard is valid for the `'static` lifetime.
///
/// # Returns
///
/// - `Ok(`[`OwnedMutexGuard`])` if the mutex was not already locked
/// - `Err(Arc<Mutex<T>>)` if the mutex is currently locked and locking
/// it would require waiting.
///
/// This returns an [`Err`] rather than [`None`] so that the same
/// [`Arc`] clone may be reused (such as by calling `try_lock_owned`
/// again) without having to decrement and increment the reference
/// count again.
///
/// # Examples
///
/// ```
/// # // since we are targeting no-std, it makes more sense to use `alloc`
/// # // in these examples, rather than `std`...but i don't want to make
/// # // the tests actually `#![no_std]`...
/// # use std as alloc;
/// use maitake_sync::Mutex;
/// use alloc::sync::Arc;
///
/// # fn main() {
/// let mutex = Arc::new(Mutex::new(1));
///
/// if let Ok(guard) = mutex.clone().try_lock_owned() {
/// assert_eq!(*guard, 1);
/// }
/// # }
/// ```
pub fn try_lock_owned(self: Arc<Self>) -> Result<OwnedMutexGuard<T>, Arc<Self>> {
match self.wait.try_wait() {
Poll::Pending => Err(self),
Poll::Ready(Ok(_)) => Ok(unsafe {
// safety: we have just acquired the lock
self.owned_guard()
}),
Poll::Ready(Err(_)) => unsafe {
unreachable_unchecked!("`Mutex` never calls `WaitQueue::close`")
},
}
}
/// Constructs a new `OwnedMutexGuard` for this `Mutex`.
///
/// # Safety
///
/// This may only be called once a lock has been acquired.
unsafe fn owned_guard(self: Arc<Self>) -> OwnedMutexGuard<T> {
let data = self.data.get_mut();
OwnedMutexGuard {
_wake: WakeArcOnDrop(self),
data,
}
}
}
struct WakeArcOnDrop<T: ?Sized>(Arc<Mutex<T>>);
// === impl OwnedMutexGuard ===
impl<T: ?Sized> Deref for OwnedMutexGuard<T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe {
// safety: we are holding the lock
&*self.data.deref()
}
}
}
impl<T: ?Sized> DerefMut for OwnedMutexGuard<T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe {
// safety: we are holding the lock
self.data.deref()
}
}
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for OwnedMutexGuard<T> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.deref().fmt(f)
}
}
unsafe impl<T: ?Sized> Send for OwnedMutexGuard<T> where T: Send {}
unsafe impl<T: ?Sized> Sync for OwnedMutexGuard<T> where T: Send + Sync {}
impl<T: ?Sized> Drop for WakeArcOnDrop<T> {
fn drop(&mut self) {
self.0.wait.wake()
}
}
}