maitake_sync/semaphore.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
//! An asynchronous [counting semaphore].
//!
//! A semaphore limits the number of tasks which may execute concurrently. See
//! the [`Semaphore`] type's documentation for details.
//!
//! [counting semaphore]: https://en.wikipedia.org/wiki/Semaphore_(programming)
use crate::{
loom::{
cell::UnsafeCell,
sync::{
atomic::{AtomicUsize, Ordering::*},
spin::{Mutex, MutexGuard},
},
},
util::{fmt, CachePadded, WakeBatch},
WaitResult,
};
use cordyceps::{
list::{self, List},
Linked,
};
use core::{
cmp,
future::Future,
marker::PhantomPinned,
pin::Pin,
ptr::{self, NonNull},
task::{Context, Poll, Waker},
};
use pin_project::{pin_project, pinned_drop};
#[cfg(test)]
mod tests;
/// An asynchronous [counting semaphore].
///
/// A semaphore is a synchronization primitive that limits the number of tasks
/// that may run concurrently. It consists of a count of _permits_, which tasks
/// may [`acquire`] in order to execute in some context. When a task acquires a
/// permit from the semaphore, the count of permits held by the semaphore is
/// decreased. When no permits remain in the semaphore, any task that wishes to
/// acquire a permit must (asynchronously) wait until another task has released
/// a permit.
///
/// The [`Permit`] type is a RAII guard representing one or more permits
/// acquired from a `Semaphore`. When a [`Permit`] is dropped, the permits it
/// represents are released back to the `Semaphore`, potentially allowing a
/// waiting task to acquire them.
///
/// # Fairness
///
/// This semaphore is _fair_: as permits become available, they are assigned to
/// waiting tasks in the order that those tasks requested permits (first-in,
/// first-out). This means that all tasks waiting to acquire permits will
/// eventually be allowed to progress, and a single task cannot starve the
/// semaphore of permits (provided that permits are eventually released). The
/// semaphore remains fair even when a call to `acquire` requests more than one
/// permit at a time.
///
/// # Examples
///
/// Using a semaphore to limit concurrency:
///
/// ```
/// # use tokio::task;
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn test() {
/// # use std as alloc;
/// use maitake_sync::Semaphore;
/// use alloc::sync::Arc;
///
/// # let mut tasks = Vec::new();
/// // Allow 4 tasks to run concurrently at a time.
/// let semaphore = Arc::new(Semaphore::new(4));
///
/// for _ in 0..8 {
/// // Clone the `Arc` around the semaphore.
/// let semaphore = semaphore.clone();
/// # let t =
/// task::spawn(async move {
/// // Acquire a permit from the semaphore, returning a RAII guard that
/// // releases the permit back to the semaphore when dropped.
/// //
/// // If all 4 permits have been acquired, the calling task will yield,
/// // and it will be woken when another task releases a permit.
/// let _permit = semaphore
/// .acquire(1)
/// .await
/// .expect("semaphore will not be closed");
///
/// // do some work...
/// });
/// # tasks.push(t);
/// }
/// # for task in tasks { task.await.unwrap() };
/// # }
/// # test();
/// ```
///
/// A semaphore may also be used to cause a task to run once all of a set of
/// tasks have completed. If we want some task _B_ to run only after a fixed
/// number _n_ of tasks _A_ have run, we can have task _B_ try to acquire _n_
/// permits from a semaphore with 0 permits, and have each task _A_ add one
/// permit to the semaphore when it completes.
///
/// For example:
///
/// ```
/// # use tokio::task;
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn test() {
/// # use std as alloc;
/// use maitake_sync::Semaphore;
/// use alloc::sync::Arc;
///
/// // How many tasks will we be waiting for the completion of?
/// const TASKS: usize = 4;
///
/// // Create the semaphore with 0 permits.
/// let semaphore = Arc::new(Semaphore::new(0));
///
/// // Spawn the "B" task that will wait for the 4 "A" tasks to complete.
/// # let b_task =
/// task::spawn({
/// let semaphore = semaphore.clone();
/// async move {
/// println!("Task B starting...");
///
/// // Since the semaphore is created with 0 permits, this will
/// // wait until all 4 "A" tasks have completed.
/// let _permit = semaphore
/// .acquire(TASKS)
/// .await
/// .expect("semaphore will not be closed");
///
/// // ... do some work ...
///
/// println!("Task B done!");
/// }
/// });
///
/// # let mut tasks = Vec::new();
/// for i in 0..TASKS {
/// let semaphore = semaphore.clone();
/// # let t =
/// task::spawn(async move {
/// println!("Task A {i} starting...");
///
/// // Add a single permit to the semaphore. Once all 4 tasks have
/// // completed, the semaphore will have the 4 permits required to
/// // wake the "B" task.
/// semaphore.add_permits(1);
///
/// // ... do some work ...
///
/// println!("Task A {i} done");
/// });
/// # tasks.push(t);
/// }
///
/// # for t in tasks { t.await.unwrap() };
/// # b_task.await.unwrap();
/// # }
/// # test();
/// ```
///
/// [counting semaphore]: https://en.wikipedia.org/wiki/Semaphore_(programming)
/// [`acquire`]: Semaphore::acquire
#[derive(Debug)]
pub struct Semaphore {
/// The number of permits in the semaphore (or [`usize::MAX] if the
/// semaphore is closed.
permits: CachePadded<AtomicUsize>,
/// The queue of tasks waiting to acquire permits.
///
/// A spinlock (from `mycelium_util`) is used here, in order to support
/// `no_std` platforms; when running `loom` tests, a `loom` mutex is used
/// instead to simulate the spinlock, because loom doesn't play nice with
/// real spinlocks.
waiters: Mutex<SemQueue>,
}
/// A [RAII guard] representing one or more permits acquired from a
/// [`Semaphore`].
///
/// When the `Permit` is dropped, the permits it represents are released back to
/// the [`Semaphore`], potentially waking another task.
///
/// This type is returned by the [`Semaphore::acquire`] and
/// [`Semaphore::try_acquire`] methods.
///
/// [RAII guard]: https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
#[derive(Debug)]
#[must_use = "dropping a `Permit` releases the acquired permits back to the `Semaphore`"]
pub struct Permit<'sem> {
permits: usize,
semaphore: &'sem Semaphore,
}
/// The future returned by the [`Semaphore::acquire`] method.
#[derive(Debug)]
#[pin_project(PinnedDrop)]
#[must_use = "futures do nothing unless `.await`ed or `poll`ed"]
pub struct Acquire<'sem> {
semaphore: &'sem Semaphore,
queued: bool,
permits: usize,
#[pin]
waiter: Waiter,
}
/// Errors returned by [`Semaphore::try_acquire`].
#[derive(Debug, PartialEq, Eq)]
pub enum TryAcquireError {
/// The semaphore has been [closed], so additional permits cannot be
/// acquired.
///
/// [closed]: Semaphore::close
Closed,
/// The semaphore does not currently have enough permits to satisfy the
/// request.
InsufficientPermits,
}
/// The semaphore's queue of waiters. This is the portion of the semaphore's
/// state stored inside the lock.
#[derive(Debug)]
struct SemQueue {
/// The linked list of waiters.
///
/// # Safety
///
/// This is protected by a mutex; the mutex *must* be acquired when
/// manipulating the linked list, OR when manipulating waiter nodes that may
/// be linked into the list. If a node is known to not be linked, it is safe
/// to modify that node (such as by waking the stored [`Waker`]) without
/// holding the lock; otherwise, it may be modified through the list, so the
/// lock must be held when modifying the
/// node.
queue: List<Waiter>,
/// Has the semaphore closed?
///
/// This is tracked inside of the locked state to avoid a potential race
/// condition where the semaphore closes while trying to lock the wait queue.
closed: bool,
}
#[derive(Debug)]
#[pin_project]
struct Waiter {
#[pin]
node: UnsafeCell<Node>,
remaining_permits: RemainingPermits,
}
/// The number of permits needed before this waiter can be woken.
///
/// When this value reaches zero, the waiter has acquired all its needed
/// permits and can be woken. If this value is `usize::max`, then the waiter
/// has not yet been linked into the semaphore queue.
#[derive(Debug)]
struct RemainingPermits(AtomicUsize);
#[derive(Debug)]
struct Node {
links: list::Links<Waiter>,
waker: Option<Waker>,
// This type is !Unpin due to the heuristic from:
// <https://github.com/rust-lang/rust/pull/82834>
_pin: PhantomPinned,
}
// === impl Semaphore ===
impl Semaphore {
/// The maximum number of permits a `Semaphore` may contain.
pub const MAX_PERMITS: usize = usize::MAX - 1;
const CLOSED: usize = usize::MAX;
loom_const_fn! {
/// Returns a new `Semaphore` with `permits` permits available.
///
/// # Panics
///
/// If `permits` is less than [`MAX_PERMITS`] ([`usize::MAX`] - 1).
///
/// [`MAX_PERMITS`]: Self::MAX_PERMITS
#[must_use]
pub fn new(permits: usize) -> Self {
assert!(
permits <= Self::MAX_PERMITS,
"a semaphore may not have more than Semaphore::MAX_PERMITS permits",
);
Self {
permits: CachePadded::new(AtomicUsize::new(permits)),
waiters: Mutex::new(SemQueue {
queue: List::new(),
closed: false,
}),
}
}
}
/// Returns the number of permits currently available in this semaphore, or
/// 0 if the semaphore is [closed].
///
/// [closed]: Semaphore::close
pub fn available_permits(&self) -> usize {
let permits = self.permits.load(Acquire);
if permits == Self::CLOSED {
return 0;
}
permits
}
/// Acquire `permits` permits from the `Semaphore`, waiting asynchronously
/// if there are insufficient permits currently available.
///
/// # Returns
///
/// - `Ok(`[`Permit`]`)` with the requested number of permits, if the
/// permits were acquired.
/// - `Err(`[`Closed`]`)` if the semaphore was [closed].
///
/// # Cancellation
///
/// This method uses a queue to fairly distribute permits in the order they
/// were requested. If an [`Acquire`] future is dropped before it completes,
/// the task will lose its place in the queue.
///
/// [`Closed`]: crate::Closed
/// [closed]: Semaphore::close
pub fn acquire(&self, permits: usize) -> Acquire<'_> {
Acquire {
semaphore: self,
queued: false,
permits,
waiter: Waiter::new(permits),
}
}
/// Add `permits` new permits to the semaphore.
///
/// This permanently increases the number of permits available in the
/// semaphore. The permit count can be permanently *decreased* by calling
/// [`acquire`] or [`try_acquire`], and [`forget`]ting the returned [`Permit`].
///
/// # Panics
///
/// If adding `permits` permits would cause the permit count to overflow
/// [`MAX_PERMITS`] ([`usize::MAX`] - 1).
///
/// [`acquire`]: Self::acquire
/// [`try_acquire`]: Self::try_acquire
/// [`forget`]: Permit::forget
/// [`MAX_PERMITS`]: Self::MAX_PERMITS
#[inline(always)]
pub fn add_permits(&self, permits: usize) {
if permits == 0 {
return;
}
self.add_permits_locked(permits, self.waiters.lock());
}
/// Try to acquire `permits` permits from the `Semaphore`, without waiting
/// for additional permits to become available.
///
/// # Returns
///
/// - `Ok(`[`Permit`]`)` with the requested number of permits, if the
/// permits were acquired.
/// - `Err(`[`TryAcquireError::Closed`]`)` if the semaphore was [closed].
/// - `Err(`[`TryAcquireError::InsufficientPermits`]`)` if the semaphore had
/// fewer than `permits` permits available.
///
/// [`Closed`]: crate::Closed
/// [closed]: Semaphore::close
pub fn try_acquire(&self, permits: usize) -> Result<Permit<'_>, TryAcquireError> {
trace!(permits, "Semaphore::try_acquire");
self.try_acquire_inner(permits).map(|_| Permit {
permits,
semaphore: self,
})
}
/// Closes the semaphore.
///
/// This wakes all tasks currently waiting on the semaphore, and prevents
/// new permits from being acquired.
pub fn close(&self) {
let mut waiters = self.waiters.lock();
self.permits.store(Self::CLOSED, Release);
waiters.closed = true;
while let Some(waiter) = waiters.queue.pop_back() {
if let Some(waker) = Waiter::take_waker(waiter, &mut waiters.queue) {
waker.wake();
}
}
}
fn poll_acquire(
&self,
mut node: Pin<&mut Waiter>,
permits: usize,
queued: bool,
cx: &mut Context<'_>,
) -> Poll<WaitResult<()>> {
trace!(
waiter = ?fmt::ptr(node.as_mut()),
permits,
queued,
"Semaphore::poll_acquire"
);
// the total number of permits we've acquired so far.
let mut acquired_permits = 0;
let waiter = node.as_mut().project();
// how many permits are currently needed?
let needed_permits = if queued {
waiter.remaining_permits.remaining()
} else {
permits
};
// okay, let's try to consume the requested number of permits from the
// semaphore.
let mut sem_curr = self.permits.load(Relaxed);
let mut lock = None;
let mut waiters = loop {
// semaphore has closed
if sem_curr == Self::CLOSED {
return crate::closed();
}
// the total number of permits currently available to this waiter
// are the number it has acquired so far plus all the permits
// in the semaphore.
let available_permits = sem_curr + acquired_permits;
let mut remaining = 0;
let mut sem_next = sem_curr;
let can_acquire = if available_permits >= needed_permits {
// there are enough permits available to satisfy this request.
// the semaphore's next state will be the current number of
// permits less the amount we have to take from it to satisfy
// request.
sem_next -= needed_permits - acquired_permits;
needed_permits
} else {
// the number of permits available in the semaphore is less than
// number we want to acquire. take all the currently available
// permits.
sem_next = 0;
// how many permits do we still need to acquire?
remaining = (needed_permits - acquired_permits) - sem_curr;
sem_curr
};
if remaining > 0 && lock.is_none() {
// we weren't able to acquire enough permits on this poll, so
// the waiter will probably need to be queued, so we must lock
// the wait queue.
//
// this has to happen *before* the CAS that sets the new value
// of the semaphore's permits counter. if we subtracted the
// permits before acquiring the lock, additional permits might
// be added to the semaphore while we were waiting to lock the
// wait queue, and we would miss acquiring those permits.
// therefore, we lock the queue now.
lock = Some(self.waiters.lock());
}
if let Err(actual) = test_dbg!(self.permits.compare_exchange(
test_dbg!(sem_curr),
test_dbg!(sem_next),
AcqRel,
Acquire
)) {
// the semaphore was updated while we were trying to acquire
// permits.
sem_curr = actual;
continue;
}
// okay, we took some permits from the semaphore.
acquired_permits += can_acquire;
// did we acquire all the permits we needed?
if test_dbg!(remaining) == 0 {
if !queued {
// the wasn't already in the queue, so we won't need to
// remove it --- we're done!
trace!(
waiter = ?fmt::ptr(node.as_mut()),
permits,
queued,
"Semaphore::poll_acquire -> all permits acquired; done"
);
return Poll::Ready(Ok(()));
} else {
// we acquired all the permits we needed, but the waiter was
// already in the queue, so we need to dequeue it. we may
// have already acquired the lock on a previous CAS attempt
// that failed, but if not, grab it now.
break lock.unwrap_or_else(|| self.waiters.lock());
}
}
// we updated the semaphore, and will need to wait to acquire
// additional permits.
break lock.expect("we should have acquired the lock before trying to wait");
};
if waiters.closed {
trace!(
waiter = ?fmt::ptr(node.as_mut()),
permits,
queued,
"Semaphore::poll_acquire -> semaphore closed"
);
return crate::closed();
}
// add permits to the waiter, returning whether we added enough to wake
// it.
if waiter.remaining_permits.add(&mut acquired_permits) {
trace!(
waiter = ?fmt::ptr(node.as_mut()),
permits,
queued,
"Semaphore::poll_acquire -> remaining permits acquired; done"
);
// if there are permits left over after waking the node, give the
// remaining permits back to the semaphore, potentially assigning
// them to the next waiter in the queue.
self.add_permits_locked(acquired_permits, waiters);
return Poll::Ready(Ok(()));
}
debug_assert_eq!(
acquired_permits, 0,
"if we are enqueueing a waiter, we must have used all the acquired permits"
);
// we need to wait --- register the polling task's waker, and enqueue
// node.
let node_ptr = unsafe { NonNull::from(Pin::into_inner_unchecked(node)) };
Waiter::with_node(node_ptr, &mut waiters.queue, |node| {
let will_wake = node
.waker
.as_ref()
.map_or(false, |waker| waker.will_wake(cx.waker()));
if !will_wake {
node.waker = Some(cx.waker().clone())
}
});
// if the waiter is not already in the queue, add it now.
if !queued {
waiters.queue.push_front(node_ptr);
trace!(
waiter = ?node_ptr,
permits,
queued,
"Semaphore::poll_acquire -> enqueued"
);
}
Poll::Pending
}
#[inline(never)]
fn add_permits_locked<'sem>(
&'sem self,
mut permits: usize,
mut waiters: MutexGuard<'sem, SemQueue>,
) {
trace!(permits, "Semaphore::add_permits");
if waiters.closed {
trace!(
permits,
"Semaphore::add_permits -> already closed; doing nothing"
);
return;
}
let mut drained_queue = false;
while permits > 0 && !drained_queue {
let mut batch = WakeBatch::new();
while batch.can_add_waker() {
// peek the last waiter in the queue to add permits to it; we may not
// be popping it from the queue if there are not enough permits to
// wake that waiter.
match waiters.queue.back() {
Some(waiter) => {
// try to add enough permits to wake this waiter. if we
// can't, break --- we should be out of permits.
if !waiter.project_ref().remaining_permits.add(&mut permits) {
debug_assert_eq!(permits, 0);
break;
}
}
None => {
// we've emptied the queue. all done!
drained_queue = true;
break;
}
};
// okay, we added enough permits to wake this waiter.
let waiter = waiters
.queue
.pop_back()
.expect("if `back()` returned `Some`, `pop_back()` will also return `Some`");
let waker = Waiter::take_waker(waiter, &mut waiters.queue);
trace!(?waiter, ?waker, permits, "Semaphore::add_permits -> waking");
if let Some(waker) = waker {
batch.add_waker(waker);
}
}
if permits > 0 && drained_queue {
trace!(
permits,
"Semaphore::add_permits -> queue drained, assigning remaining permits to semaphore"
);
// we drained the queue, but there are still permits left --- add
// them to the semaphore.
let prev = self.permits.fetch_add(permits, Release);
assert!(
prev + permits <= Self::MAX_PERMITS,
"semaphore overflow adding {permits} permits to {prev}; max permits: {}",
Self::MAX_PERMITS
);
}
// wake set is full, drop the lock and wake everyone!
drop(waiters);
batch.wake_all();
// reacquire the lock and continue waking
waiters = self.waiters.lock();
}
}
/// Drop an `Acquire` future.
///
/// This is factored out into a method on `Semaphore`, because the same code
/// is run when dropping an `Acquire` future or an `AcquireOwned` future.
fn drop_acquire(&self, waiter: Pin<&mut Waiter>, permits: usize, queued: bool) {
// If the future is completed, there is no node in the wait list, so we
// can skip acquiring the lock.
if !queued {
return;
}
// This is where we ensure safety. The future is being dropped,
// which means we must ensure that the waiter entry is no longer stored
// in the linked list.
let mut waiters = self.waiters.lock();
let acquired_permits = permits - waiter.remaining_permits.remaining();
// Safety: we have locked the wait list.
unsafe {
// remove the entry from the list
let node = NonNull::from(Pin::into_inner_unchecked(waiter));
waiters.queue.remove(node)
};
if acquired_permits > 0 {
self.add_permits_locked(acquired_permits, waiters);
}
}
/// Try to acquire permits from the semaphore without waiting.
///
/// This method is factored out because it's identical between the
/// `try_acquire` and `try_acquire_owned` methods, which behave identically
/// but return different permit types.
fn try_acquire_inner(&self, permits: usize) -> Result<(), TryAcquireError> {
let mut available = self.permits.load(Relaxed);
loop {
// are there enough permits to satisfy the request?
match available {
Self::CLOSED => {
trace!(permits, "Semaphore::try_acquire -> closed");
return Err(TryAcquireError::Closed);
}
available if available < permits => {
trace!(
permits,
available,
"Semaphore::try_acquire -> insufficient permits"
);
return Err(TryAcquireError::InsufficientPermits);
}
_ => {}
}
let remaining = available - permits;
match self
.permits
.compare_exchange_weak(available, remaining, AcqRel, Acquire)
{
Ok(_) => {
trace!(permits, remaining, "Semaphore::try_acquire -> acquired");
return Ok(());
}
Err(actual) => available = actual,
}
}
}
}
// === impl Acquire ===
impl<'sem> Future for Acquire<'sem> {
type Output = WaitResult<Permit<'sem>>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let poll = this
.semaphore
.poll_acquire(this.waiter, *this.permits, *this.queued, cx)
.map_ok(|_| Permit {
permits: *this.permits,
semaphore: this.semaphore,
});
*this.queued = poll.is_pending();
poll
}
}
#[pinned_drop]
impl PinnedDrop for Acquire<'_> {
fn drop(self: Pin<&mut Self>) {
let this = self.project();
trace!(?this.queued, "Acquire::drop");
this.semaphore
.drop_acquire(this.waiter, *this.permits, *this.queued)
}
}
// safety: the `Acquire` future is not automatically `Sync` because the `Waiter`
// node contains an `UnsafeCell`, which is not `Sync`. this impl is safe because
// the `Acquire` future will only access this `UnsafeCell` when mutably borrowed
// (when polling or dropping the future), so the future itself is safe to share
// immutably between threads.
unsafe impl Sync for Acquire<'_> {}
// === impl Permit ===
impl Permit<'_> {
/// Forget this permit, dropping it *without* returning the number of
/// acquired permits to the semaphore.
///
/// This permanently decreases the number of permits in the semaphore by
/// [`self.permits()`](Self::permits).
pub fn forget(mut self) {
self.permits = 0;
}
/// Returns the count of semaphore permits owned by this `Permit`.
#[inline]
#[must_use]
pub fn permits(&self) -> usize {
self.permits
}
}
impl Drop for Permit<'_> {
fn drop(&mut self) {
trace!(?self.permits, "Permit::drop");
self.semaphore.add_permits(self.permits);
}
}
// === impl TryAcquireError ===
impl fmt::Display for TryAcquireError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Closed => f.pad("semaphore closed"),
Self::InsufficientPermits => f.pad("semaphore has insufficient permits"),
}
}
}
feature! {
#![feature = "core-error"]
impl core::error::Error for TryAcquireError {}
}
// === Owned variants when `Arc` is available ===
feature! {
#![feature = "alloc"]
use alloc::sync::Arc;
/// Future returned from [`Semaphore::acquire_owned()`].
///
/// This is identical to the [`Acquire`] future, except that it takes an
/// [`Arc`] reference to the [`Semaphore`], allowing the returned future to
/// live for the `'static` lifetime, and returns an [`OwnedPermit`] (rather
/// than a [`Permit`]), which is also valid for the `'static` lifetime.
#[derive(Debug)]
#[pin_project(PinnedDrop)]
#[must_use = "futures do nothing unless `.await`ed or `poll`ed"]
pub struct AcquireOwned {
semaphore: Arc<Semaphore>,
queued: bool,
permits: usize,
#[pin]
waiter: Waiter,
}
/// An owned [RAII guard] representing one or more permits acquired from a
/// [`Semaphore`].
///
/// When the `OwnedPermit` is dropped, the permits it represents are
/// released back to the [`Semaphore`], potentially waking another task.
///
/// This type is identical to the [`Permit`] type, except that it holds an
/// [`Arc`] clone of the [`Semaphore`], rather than borrowing it. This
/// allows the guard to be valid for the `'static` lifetime.
///
/// This type is returned by the [`Semaphore::acquire_owned`] and
/// [`Semaphore::try_acquire_owned`] methods.
///
/// [RAII guard]: https://rust-unofficial.github.io/patterns/patterns/behavioural/RAII.html
#[derive(Debug)]
#[must_use = "dropping an `OwnedPermit` releases the acquired permits back to the `Semaphore`"]
pub struct OwnedPermit {
permits: usize,
semaphore: Arc<Semaphore>,
}
impl Semaphore {
/// Acquire `permits` permits from the `Semaphore`, waiting asynchronously
/// if there are insufficient permits currently available, and returning
/// an [`OwnedPermit`].
///
/// This method behaves identically to [`acquire`], except that it
/// requires the `Semaphore` to be wrapped in an [`Arc`], and returns an
/// [`OwnedPermit`] which clones the [`Arc`] rather than borrowing the
/// semaphore. This allows the returned [`OwnedPermit`] to be valid for
/// the `'static` lifetime.
///
/// # Returns
///
/// - `Ok(`[`OwnedPermit`]`)` with the requested number of permits, if the
/// permits were acquired.
/// - `Err(`[`Closed`]`)` if the semaphore was [closed].
///
/// # Cancellation
///
/// This method uses a queue to fairly distribute permits in the order they
/// were requested. If an [`AcquireOwned`] future is dropped before it
/// completes, the task will lose its place in the queue.
///
/// [`acquire`]: Semaphore::acquire
/// [`Closed`]: crate::Closed
/// [closed]: Semaphore::close
pub fn acquire_owned(self: &Arc<Self>, permits: usize) -> AcquireOwned {
AcquireOwned {
semaphore: self.clone(),
queued: false,
permits,
waiter: Waiter::new(permits),
}
}
/// Try to acquire `permits` permits from the `Semaphore`, without waiting
/// for additional permits to become available, and returning an [`OwnedPermit`].
///
/// This method behaves identically to [`try_acquire`], except that it
/// requires the `Semaphore` to be wrapped in an [`Arc`], and returns an
/// [`OwnedPermit`] which clones the [`Arc`] rather than borrowing the
/// semaphore. This allows the returned [`OwnedPermit`] to be valid for
/// the `'static` lifetime.
///
/// # Returns
///
/// - `Ok(`[`OwnedPermit`]`)` with the requested number of permits, if the
/// permits were acquired.
/// - `Err(`[`TryAcquireError::Closed`]`)` if the semaphore was [closed].
/// - `Err(`[`TryAcquireError::InsufficientPermits`]`)` if the semaphore
/// had fewer than `permits` permits available.
///
///
/// [`try_acquire`]: Semaphore::try_acquire
/// [`Closed`]: crate::Closed
/// [closed]: Semaphore::close
pub fn try_acquire_owned(self: &Arc<Self>, permits: usize) -> Result<OwnedPermit, TryAcquireError> {
trace!(permits, "Semaphore::try_acquire_owned");
self.try_acquire_inner(permits).map(|_| OwnedPermit {
permits,
semaphore: self.clone(),
})
}
}
// === impl AcquireOwned ===
impl Future for AcquireOwned {
type Output = WaitResult<OwnedPermit>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let poll = this
.semaphore
.poll_acquire(this.waiter, *this.permits, *this.queued, cx)
.map_ok(|_| OwnedPermit {
permits: *this.permits,
// TODO(eliza): might be nice to not have to bump the
// refcount here...
semaphore: this.semaphore.clone(),
});
*this.queued = poll.is_pending();
poll
}
}
#[pinned_drop]
impl PinnedDrop for AcquireOwned {
fn drop(mut self: Pin<&mut Self>) {
let this = self.project();
trace!(?this.queued, "AcquireOwned::drop");
this.semaphore
.drop_acquire(this.waiter, *this.permits, *this.queued)
}
}
// safety: this is safe for the same reasons as the `Sync` impl for the
// `Acquire` future.
unsafe impl Sync for AcquireOwned {}
// === impl OwnedPermit ===
impl OwnedPermit {
/// Forget this permit, dropping it *without* returning the number of
/// acquired permits to the semaphore.
///
/// This permanently decreases the number of permits in the semaphore by
/// [`self.permits()`](Self::permits).
pub fn forget(mut self) {
self.permits = 0;
}
/// Returns the count of semaphore permits owned by this `OwnedPermit`.
#[inline]
#[must_use]
pub fn permits(&self) -> usize {
self.permits
}
}
impl Drop for OwnedPermit {
fn drop(&mut self) {
trace!(?self.permits, "OwnedPermit::drop");
self.semaphore.add_permits(self.permits);
}
}
}
// === impl Waiter ===
impl Waiter {
fn new(permits: usize) -> Self {
Self {
node: UnsafeCell::new(Node {
links: list::Links::new(),
waker: None,
_pin: PhantomPinned,
}),
remaining_permits: RemainingPermits(AtomicUsize::new(permits)),
}
}
#[inline(always)]
#[cfg_attr(loom, track_caller)]
fn take_waker(this: NonNull<Self>, list: &mut List<Self>) -> Option<Waker> {
Self::with_node(this, list, |node| node.waker.take())
}
/// # Safety
///
/// This is only safe to call while the list is locked. The dummy `_list`
/// parameter ensures this method is only called while holding the lock, so
/// this can be safe.
///
/// Of course, that must be the *same* list that this waiter is a member of,
/// and currently, there is no way to ensure that...
#[inline(always)]
#[cfg_attr(loom, track_caller)]
fn with_node<T>(
mut this: NonNull<Self>,
_list: &mut List<Self>,
f: impl FnOnce(&mut Node) -> T,
) -> T {
unsafe {
// safety: this is only called while holding the lock on the queue,
// so it's safe to mutate the waiter.
this.as_mut().node.with_mut(|node| f(&mut *node))
}
}
}
unsafe impl Linked<list::Links<Waiter>> for Waiter {
type Handle = NonNull<Waiter>;
fn into_ptr(r: Self::Handle) -> NonNull<Self> {
r
}
unsafe fn from_ptr(ptr: NonNull<Self>) -> Self::Handle {
ptr
}
unsafe fn links(target: NonNull<Self>) -> NonNull<list::Links<Waiter>> {
// Safety: using `ptr::addr_of!` avoids creating a temporary
// reference, which stacked borrows dislikes.
let node = ptr::addr_of!((*target.as_ptr()).node);
(*node).with_mut(|node| {
let links = ptr::addr_of_mut!((*node).links);
// Safety: since the `target` pointer is `NonNull`, we can assume
// that pointers to its members are also not null, making this use
// of `new_unchecked` fine.
NonNull::new_unchecked(links)
})
}
}
// === impl RemainingPermits ===
impl RemainingPermits {
/// Add an acquisition of permits to the waiter, returning whether or not
/// the waiter has acquired enough permits to be woken.
#[inline]
#[cfg_attr(loom, track_caller)]
fn add(&self, permits: &mut usize) -> bool {
let mut curr = self.0.load(Relaxed);
loop {
let taken = cmp::min(curr, *permits);
let remaining = curr - taken;
match self
.0
.compare_exchange_weak(curr, remaining, AcqRel, Acquire)
{
// added the permits to the waiter!
Ok(_) => {
*permits -= taken;
return remaining == 0;
}
Err(actual) => curr = actual,
}
}
}
#[inline]
fn remaining(&self) -> usize {
self.0.load(Acquire)
}
}