maitake_sync/spin/
mutex.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
use crate::{
    loom::{
        cell::{MutPtr, UnsafeCell},
        sync::atomic::{AtomicBool, Ordering::*},
    },
    util::Backoff,
};
use core::{
    fmt,
    ops::{Deref, DerefMut},
};

/// A spinlock-based mutual exclusion lock for protecting shared data
///
/// This mutex will spin with an exponential backoff while waiting for the lock
/// to become available. Each mutex has a type parameter which represents
/// the data that it is protecting. The data can only be accessed through the
/// RAII guards returned from [`lock`] and [`try_lock`], which guarantees that
/// the data is only ever accessed when the mutex is locked.
///
/// # Fairness
///
/// This is *not* a fair mutex.
///
/// # Loom-specific behavior
///
/// When `cfg(loom)` is enabled, this mutex will use Loom's simulated atomics,
/// checked `UnsafeCell`, and simulated spin loop hints.
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[derive(Debug)]
pub struct Mutex<T> {
    locked: AtomicBool,
    data: UnsafeCell<T>,
}

/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
pub struct MutexGuard<'a, T> {
    ptr: MutPtr<T>,
    locked: &'a AtomicBool,
}

impl<T> Mutex<T> {
    loom_const_fn! {
        /// Returns a new `Mutex` protecting the provided `data`.
        ///
        /// The returned `Mutex` is in an unlocked state, ready for use.
        ///
        /// # Examples
        ///
        /// ```
        /// use maitake_sync::spin::Mutex;
        ///
        /// let mutex = Mutex::new(0);
        /// ```
        #[must_use]
        pub fn new(data: T) -> Self {
            Self {
                locked: AtomicBool::new(false),
                data: UnsafeCell::new(data),
            }
        }
    }

    /// Attempts to acquire this lock without spinning
    ///
    /// If the lock could not be acquired at this time, then [`None`] is returned.
    /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
    /// guard is dropped.
    ///
    /// This function will never spin.
    #[must_use]
    #[cfg_attr(test, track_caller)]
    pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
        if test_dbg!(self
            .locked
            .compare_exchange(false, true, Acquire, Acquire)
            .is_ok())
        {
            Some(MutexGuard {
                ptr: self.data.get_mut(),
                locked: &self.locked,
            })
        } else {
            None
        }
    }

    /// Acquires a mutex, spinning until it is locked.
    ///
    /// This function will spin until the mutex is available to lock. Upon
    /// returning, the thread is the only thread with the lock
    /// held. An RAII guard is returned to allow scoped unlock of the lock. When
    /// the guard goes out of scope, the mutex will be unlocked.
    #[cfg_attr(test, track_caller)]
    pub fn lock(&self) -> MutexGuard<'_, T> {
        let mut boff = Backoff::default();
        while test_dbg!(self
            .locked
            .compare_exchange(false, true, Acquire, Acquire)
            .is_err())
        {
            while test_dbg!(self.locked.load(Relaxed)) {
                boff.spin();
            }
        }

        MutexGuard {
            ptr: self.data.get_mut(),
            locked: &self.locked,
        }
    }

    /// Forcibly unlock the mutex.
    ///
    /// If a lock is currently held, it will be released, regardless of who's
    /// holding it. Of course, this is **outrageously, disgustingly unsafe** and
    /// you should never do it.
    ///
    /// # Safety
    ///
    /// This deliberately violates mutual exclusion.
    ///
    /// Only call this method when it is _guaranteed_ that no stack frame that
    /// has previously locked the mutex will ever continue executing.
    /// Essentially, this is only okay to call when the kernel is oopsing and
    /// all code running on other cores has already been killed.
    pub unsafe fn force_unlock(&self) {
        self.locked.store(false, Release);
    }
}

unsafe impl<T: Send> Send for Mutex<T> {}
unsafe impl<T: Send> Sync for Mutex<T> {}

// === impl MutexGuard ===

impl<'a, T> Deref for MutexGuard<'a, T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &Self::Target {
        unsafe {
            // Safety: we are holding the lock, so it is okay to dereference the
            // mut pointer.
            &*self.ptr.deref()
        }
    }
}

impl<'a, T> DerefMut for MutexGuard<'a, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe {
            // Safety: we are holding the lock, so it is okay to dereference the
            // mut pointer.
            self.ptr.deref()
        }
    }
}

impl<'a, T, R: ?Sized> AsRef<R> for MutexGuard<'a, T>
where
    T: AsRef<R>,
{
    #[inline]
    fn as_ref(&self) -> &R {
        self.deref().as_ref()
    }
}

impl<'a, T, R: ?Sized> AsMut<R> for MutexGuard<'a, T>
where
    T: AsMut<R>,
{
    #[inline]
    fn as_mut(&mut self) -> &mut R {
        self.deref_mut().as_mut()
    }
}

impl<'a, T> Drop for MutexGuard<'a, T> {
    fn drop(&mut self) {
        test_dbg!(self.locked.store(false, Release));
    }
}

impl<'a, T: fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.deref().fmt(f)
    }
}

impl<'a, T: fmt::Display> fmt::Display for MutexGuard<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.deref().fmt(f)
    }
}

#[cfg(test)]
mod tests {
    use crate::loom::{self, thread};
    use std::prelude::v1::*;
    use std::sync::Arc;

    use super::*;

    #[test]
    fn multithreaded() {
        loom::model(|| {
            let mutex = Arc::new(Mutex::new(String::new()));
            let mutex2 = mutex.clone();

            let t1 = thread::spawn(move || {
                tracing::info!("t1: locking...");
                let mut lock = mutex2.lock();
                tracing::info!("t1: locked");
                lock.push_str("bbbbb");
                tracing::info!("t1: dropping...");
            });

            {
                tracing::info!("t2: locking...");
                let mut lock = mutex.lock();
                tracing::info!("t2: locked");
                lock.push_str("bbbbb");
                tracing::info!("t2: dropping...");
            }
            t1.join().unwrap();
        });
    }

    #[test]
    fn try_lock() {
        loom::model(|| {
            let mutex = Mutex::new(42);
            // First lock succeeds
            let a = mutex.try_lock();
            assert_eq!(a.as_ref().map(|r| **r), Some(42));

            // Additional lock failes
            let b = mutex.try_lock();
            assert!(b.is_none());

            // After dropping lock, it succeeds again
            ::core::mem::drop(a);
            let c = mutex.try_lock();
            assert_eq!(c.as_ref().map(|r| **r), Some(42));
        });
    }
}