maitake_sync/wait_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
//! A map of [`Waker`]s associated with keys, so that a task can be woken by
//! key.
//!
//! See the documentation for the [`WaitMap`] type for details.
use crate::{
loom::{
cell::UnsafeCell,
sync::{
atomic::{AtomicUsize, Ordering::*},
spin::{Mutex, MutexGuard},
},
},
util::{fmt, CachePadded, WakeBatch},
};
use cordyceps::{
list::{self, List},
Linked,
};
use core::{
fmt::Debug,
future::Future,
marker::PhantomPinned,
mem,
pin::Pin,
ptr::{self, NonNull},
task::{Context, Poll, Waker},
};
use mycelium_bitfield::{enum_from_bits, FromBits};
use pin_project::{pin_project, pinned_drop};
#[cfg(test)]
mod tests;
/// Errors returned by [`WaitMap::wait`], indicating a failed wake.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[non_exhaustive]
pub enum WaitError {
/// The [`WaitMap`] has already been [closed].
///
/// [closed]: WaitMap::close
Closed,
/// The received data has already been extracted
AlreadyConsumed,
/// The [`Wait`] was never added to the [`WaitMap`]
NeverAdded,
/// The [`WaitMap`] already had an item matching the given
/// key
Duplicate,
}
/// The result of a call to [`WaitMap::wait()`].
pub type WaitResult<T> = Result<T, WaitError>;
const fn closed<T>() -> Poll<WaitResult<T>> {
Poll::Ready(Err(WaitError::Closed))
}
const fn consumed<T>() -> Poll<WaitResult<T>> {
Poll::Ready(Err(WaitError::AlreadyConsumed))
}
const fn never_added<T>() -> Poll<WaitResult<T>> {
Poll::Ready(Err(WaitError::NeverAdded))
}
const fn duplicate<T>() -> Poll<WaitResult<T>> {
Poll::Ready(Err(WaitError::Duplicate))
}
const fn notified<T>(data: T) -> Poll<WaitResult<T>> {
Poll::Ready(Ok(data))
}
/// A map of [`Waker`]s associated with keys, allowing tasks to be woken by
/// their key.
///
/// A `WaitMap` allows any number of tasks to [wait] asynchronously and be
/// woken when a value with a certain key arrives. This can be used to
/// implement structures like "async mailboxes", where an async function
/// requests some data (such as a response) associated with a certain
/// key (such as a message ID). When the data is received, the key can
/// be used to provide the task with the desired data, as well as wake
/// the task for further processing.
///
/// # Examples
///
/// Waking a single task at a time by calling [`wake`][wake]:
///
/// ```ignore
/// use std::sync::Arc;
/// use maitake::scheduler;
/// use maitake_sync::wait_map::{WaitMap, WakeOutcome};
///
/// const TASKS: usize = 10;
///
/// // In order to spawn tasks, we need a `Scheduler` instance.
/// let scheduler = Scheduler::new();
///
/// // Construct a new `WaitMap`.
/// let q = Arc::new(WaitMap::new());
///
/// // Spawn some tasks that will wait on the queue.
/// // We'll use the task index (0..10) as the key.
/// for i in 0..TASKS {
/// let q = q.clone();
/// scheduler.spawn(async move {
/// let val = q.wait(i).await.unwrap();
/// assert_eq!(val, i + 100);
/// });
/// }
///
/// // Tick the scheduler once.
/// let tick = scheduler.tick();
///
/// // No tasks should complete on this tick, as they are all waiting
/// // to be woken by the queue.
/// assert_eq!(tick.completed, 0, "no tasks have been woken");
///
/// // We now wake each of the tasks, using the same key (0..10),
/// // and provide them with a value that is their `key + 100`,
/// // e.g. 100..110. Only the task that has been woken will be
/// // notified.
/// for i in 0..TASKS {
/// let result = q.wake(&i, i + 100);
/// assert!(matches!(result, WakeOutcome::Woke));
///
/// // Tick the scheduler.
/// let tick = scheduler.tick();
///
/// // Exactly one task should have completed
/// assert_eq!(tick.completed, 1);
/// }
///
/// // Tick the scheduler.
/// let tick = scheduler.tick();
///
/// // No additional tasks should be completed
/// assert_eq!(tick.completed, 0);
/// assert!(!tick.has_remaining);
/// ```
///
/// # Implementation Notes
///
/// This type is currently implemented using [intrusive doubly-linked
/// list][ilist].
///
/// The *[intrusive]* aspect of this map is important, as it means that it does
/// not allocate memory. Instead, nodes in the linked list are stored in the
/// futures of tasks trying to wait for capacity. This means that it is not
/// necessary to allocate any heap memory for each task waiting to be woken.
///
/// However, the intrusive linked list introduces one new danger: because
/// futures can be *cancelled*, and the linked list nodes live within the
/// futures trying to wait on the queue, we *must* ensure that the node
/// is unlinked from the list before dropping a cancelled future. Failure to do
/// so would result in the list containing dangling pointers. Therefore, we must
/// use a *doubly-linked* list, so that nodes can edit both the previous and
/// next node when they have to remove themselves. This is kind of a bummer, as
/// it means we can't use something nice like this [intrusive queue by Dmitry
/// Vyukov][2], and there are not really practical designs for lock-free
/// doubly-linked lists that don't rely on some kind of deferred reclamation
/// scheme such as hazard pointers or QSBR.
///
/// Instead, we just stick a [`Mutex`] around the linked list, which must be
/// acquired to pop nodes from it, or for nodes to remove themselves when
/// futures are cancelled. This is a bit sad, but the critical sections for this
/// mutex are short enough that we still get pretty good performance despite it.
///
/// [`Waker`]: core::task::Waker
/// [wait]: WaitMap::wait
/// [wake]: WaitMap::wake
/// [`UnsafeCell`]: core::cell::UnsafeCell
/// [ilist]: cordyceps::List
/// [intrusive]: https://fuchsia.dev/fuchsia-src/development/languages/c-cpp/fbl_containers_guide/introduction
/// [2]: https://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
pub struct WaitMap<K: PartialEq, V> {
/// The wait queue's state variable.
state: CachePadded<AtomicUsize>,
/// The linked list of waiters.
///
/// # Safety
///
/// This is protected by a mutex; the mutex *must* be acquired when
/// manipulating the linked list, OR when manipulating waiter nodes that may
/// be linked into the list. If a node is known to not be linked, it is safe
/// to modify that node (such as by waking the stored [`Waker`]) without
/// holding the lock; otherwise, it may be modified through the list, so the
/// lock must be held when modifying the
/// node.
///
/// A spinlock (from `mycelium_util`) is used here, in order to support
/// `no_std` platforms; when running `loom` tests, a `loom` mutex is used
/// instead to simulate the spinlock, because loom doesn't play nice with
/// real spinlocks.
queue: Mutex<List<Waiter<K, V>>>,
}
impl<K: PartialEq, V> Debug for WaitMap<K, V> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("WaitMap")
.field("state", &self.state)
.field("queue", &self.queue)
.finish()
}
}
/// Future returned from [`WaitMap::wait()`].
///
/// This future is fused, so once it has completed, any future calls to poll
/// will immediately return [`Poll::Ready`].
#[derive(Debug)]
#[pin_project(PinnedDrop)]
#[must_use = "futures do nothing unless `.await`ed or `poll`ed"]
pub struct Wait<'a, K: PartialEq, V> {
/// The [`WaitMap`] being waited on from.
queue: &'a WaitMap<K, V>,
/// Entry in the wait queue linked list.
#[pin]
waiter: Waiter<K, V>,
}
impl<'map, 'wait, K: PartialEq, V> Wait<'map, K, V> {
/// Returns a future that completes when the `Wait` item has been
/// added to the [`WaitMap`], and is ready to receive data
///
/// This is useful for ensuring that a receiver is ready before
/// sending a message that will elicit the expected response.
///
/// # Example
///
/// ```ignore
/// use std::sync::Arc;
/// use maitake::scheduler;
/// use maitake_sync::wait_map::{WaitMap, WakeOutcome};
/// use futures_util::pin_mut;
///
/// let scheduler = Scheduler::new();
/// let q = Arc::new(WaitMap::new());
///
/// let q2 = q.clone();
/// scheduler.spawn(async move {
/// let wait = q2.wait(0);
///
/// // At this point, we have created the future, but it has not yet
/// // been added to the queue. We could immediately await 'wait',
/// // but then we would be unable to progress further. We must
/// // first pin the `wait` future, to ensure that it does not move
/// // until it has been completed.
/// pin_mut!(wait);
/// wait.as_mut().enqueue().await.unwrap();
///
/// // We now know the waiter has been enqueued, at this point we could
/// // send a message that will cause key == 0 to be returned, without
/// // worrying about racing with the expected response, e.g:
/// //
/// // sender.send_with_id(0, SomeMessage).await?;
/// //
/// let val = wait.await.unwrap();
/// assert_eq!(val, 10);
/// });
///
/// assert!(matches!(q.wake(&0, 100), WakeOutcome::NoMatch(_)));
///
/// let tick = scheduler.tick();
///
/// assert!(matches!(q.wake(&0, 100), WakeOutcome::Woke));
/// ```
pub fn enqueue(self: Pin<&'wait mut Self>) -> EnqueueWait<'wait, 'map, K, V> {
EnqueueWait { wait: self }
}
}
/// A waiter node which may be linked into a wait queue.
#[pin_project]
struct Waiter<K: PartialEq, V> {
/// The intrusive linked list node.
#[pin]
node: UnsafeCell<Node<K, V>>,
/// The future's state.
state: WaitState,
key: K,
}
impl<K: PartialEq, V> Debug for Waiter<K, V> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("Waiter")
.field("node", &self.node)
.field("state", &self.state)
.field("key", &fmt::display(core::any::type_name::<K>()))
.field("val", &fmt::display(core::any::type_name::<V>()))
.finish()
}
}
#[repr(C)]
struct Node<K: PartialEq, V> {
/// Intrusive linked list pointers.
///
/// # Safety
///
/// This *must* be the first field in the struct in order for the `Linked`
/// impl to be sound.
links: list::Links<Waiter<K, V>>,
/// The node's waker, if it has yet to be woken, or the data assigned to the
/// node, if it has been woken.
waker: Wakeup<V>,
// This type is !Unpin due to the heuristic from:
// <https://github.com/rust-lang/rust/pull/82834>
_pin: PhantomPinned,
}
impl<K: PartialEq, V> Debug for Node<K, V> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("Node")
.field("links", &self.links)
.field("waker", &self.waker)
.finish()
}
}
enum_from_bits! {
/// The state of a [`Waiter`] node in a [`WaitMap`].
#[derive(Debug, Eq, PartialEq)]
enum WaitState<u8> {
/// The waiter has not yet been enqueued.
///
/// When in this state, the node is **not** part of the linked list, and
/// can be dropped without removing it from the list.
Start = 0b01,
/// The waiter is waiting.
///
/// When in this state, the node **is** part of the linked list. If the
/// node is dropped in this state, it **must** be removed from the list
/// before dropping it. Failure to ensure this will result in dangling
/// pointers in the linked list!
Waiting = 0b10,
/// The waiter has been woken.
///
/// When in this state, the node is **not** part of the linked list, and
/// can be dropped without removing it from the list.
Completed = 0b11,
}
}
/// The queue's current state.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[repr(u8)]
enum State {
/// No waiters are queued, and there is no pending notification.
/// Waiting while the queue is in this state will enqueue the waiter
Empty = 0b00,
/// There are one or more waiters in the queue. Waiting while
/// the queue is in this state will not transition the state. Waking while
/// in this state will wake the appropriate waiter in the queue; if this empties
/// the queue, then the queue will transition to [`State::Empty`].
Waiting = 0b01,
// TODO(AJM): We have a state gap here. Is this okay?
/// The queue is closed. Waiting while in this state will return
/// [`Closed`] without transitioning the queue's state.
///
/// *Note*: This *must* correspond to all state bits being set, as it's set
/// via a [`fetch_or`].
///
/// [`Closed`]: crate::Closed
/// [`fetch_or`]: core::sync::atomic::AtomicUsize::fetch_or
Closed = 0b11,
}
#[derive(Clone)]
enum Wakeup<V> {
/// The Waiter has been created, but no wake has occurred. This should
/// be the ONLY state while in `WaitState::Start`
Empty,
/// The Waiter has moved to the `WaitState::Waiting` state. We now
/// have the relevant waker, and are still waiting for data. This
/// corresponds to `WaitState::Waiting`.
Waiting(Waker),
/// The Waiter has received data, and is waiting for the woken task
/// to notice, and take the data by polling+completing the future.
/// This corresponds to `WaitState::Completed`.
///
/// This state stores the received value; taking the value out of the waiter
/// advances the state to `Retrieved`.
DataReceived(V),
/// The waiter has received data, and already given it away, and has
/// no more data to give. This corresponds to `WaitState::Completed`.
Retreived,
/// The Queue the waiter is part of has been closed. No data will
/// be received from this future. This corresponds to
/// `WaitState::Completed`.
Closed,
}
// === impl WaitMap ===
impl<K: PartialEq, V> WaitMap<K, V> {
/// Returns a new `WaitMap`.
#[must_use]
#[cfg(not(loom))]
pub const fn new() -> Self {
Self {
state: CachePadded::new(AtomicUsize::new(State::Empty.into_usize())),
queue: Mutex::new(List::new()),
}
}
/// Returns a new `WaitMap`.
#[must_use]
#[cfg(loom)]
pub fn new() -> Self {
Self {
state: CachePadded::new(AtomicUsize::new(State::Empty.into_usize())),
queue: Mutex::new(List::new()),
}
}
/// Wake a certain task in the queue.
///
/// If the queue is empty, a wakeup is stored in the `WaitMap`, and the
/// next call to [`wait`] will complete immediately.
///
/// [`wait`]: WaitMap::wait
#[inline]
pub fn wake(&self, key: &K, val: V) -> WakeOutcome<V> {
// snapshot the queue's current state.
let mut state = self.load();
// check if any tasks are currently waiting on this queue. if there are
// no waiting tasks, store the wakeup to be consumed by the next call to
// `wait`.
match state {
// Something is waiting!
State::Waiting => {}
// if the queue is closed, bail.
State::Closed => return WakeOutcome::Closed(val),
// if the queue is empty, bail.
State::Empty => return WakeOutcome::NoMatch(val),
}
// okay, there are tasks waiting on the queue; we must acquire the lock
// on the linked list and wake the next task from the queue.
let mut queue = self.queue.lock();
test_debug!("wake: -> locked");
// the queue's state may have changed while we were waiting to acquire
// the lock, so we need to acquire a new snapshot.
state = self.load();
if let Some(node) = self.node_match_locked(key, &mut *queue, state) {
let waker = Waiter::<K, V>::wake(node, &mut *queue, Wakeup::DataReceived(val));
drop(queue);
waker.wake();
WakeOutcome::Woke
} else {
WakeOutcome::NoMatch(val)
}
}
/// Close the queue, indicating that it may no longer be used.
///
/// Once a queue is closed, all [`wait`] calls (current or future) will
/// return an error.
///
/// This method is generally used when implementing higher-level
/// synchronization primitives or resources: when an event makes a resource
/// permanently unavailable, the queue can be closed.
///
/// [`wait`]: Self::wait
pub fn close(&self) {
let state = self.state.fetch_or(State::Closed.into_usize(), SeqCst);
let state = test_dbg!(State::from_bits(state));
if state != State::Waiting {
return;
}
let mut queue = self.queue.lock();
let mut batch = WakeBatch::new();
while let Some(node) = queue.pop_back() {
let waker = Waiter::wake(node, &mut queue, Wakeup::Closed);
if batch.add_waker(waker) {
// there's still room in the wake set, just keep adding to it.
continue;
}
// wake set is full, drop the lock and wake everyone!
drop(queue);
batch.wake_all();
// reacquire the lock and continue waking
queue = self.queue.lock();
}
// drop the lock and wake the final batch of waiters in the `WakeBatch`.
drop(queue);
batch.wake_all();
}
/// Wait to be woken up by this queue.
///
/// This returns a [`Wait`] future that will complete when the task is
/// woken by a call to [`wake`] with a matching `key`, or when the `WaitMap`
/// is dropped.
///
/// **Note**: `key`s must be unique. If the given key already exists in the
/// `WaitMap`, the future will resolve to an Error the first time it is polled
///
/// [`wake`]: Self::wake
pub fn wait(&self, key: K) -> Wait<'_, K, V> {
Wait {
queue: self,
waiter: self.waiter(key),
}
}
/// Returns a [`Waiter`] entry in this queue.
///
/// This is factored out into a separate function because it's used by both
/// [`WaitMap::wait`] and [`WaitMap::wait_owned`].
fn waiter(&self, key: K) -> Waiter<K, V> {
let state = WaitState::Start;
Waiter {
state,
node: UnsafeCell::new(Node {
links: list::Links::new(),
waker: Wakeup::Empty,
_pin: PhantomPinned,
}),
key,
}
}
#[cfg_attr(test, track_caller)]
fn load(&self) -> State {
#[allow(clippy::let_and_return)]
let state = State::from_bits(self.state.load(SeqCst));
test_debug!("state.load() = {state:?}");
state
}
#[cfg_attr(test, track_caller)]
fn store(&self, state: State) {
test_debug!("state.store({state:?}");
self.state.store(state as usize, SeqCst);
}
#[cfg_attr(test, track_caller)]
fn compare_exchange(&self, current: State, new: State) -> Result<State, State> {
#[allow(clippy::let_and_return)]
let res = self
.state
.compare_exchange(current as usize, new as usize, SeqCst, SeqCst)
.map(State::from_bits)
.map_err(State::from_bits);
test_debug!("state.compare_exchange({current:?}, {new:?}) = {res:?}");
res
}
#[cold]
#[inline(never)]
fn node_match_locked(
&self,
key: &K,
queue: &mut List<Waiter<K, V>>,
curr: State,
) -> Option<NonNull<Waiter<K, V>>> {
let state = curr;
// is the queue still in the `Waiting` state? it is possible that we
// transitioned to a different state while locking the queue.
if test_dbg!(state) != State::Waiting {
// If we are not waiting, we are either empty or closed.
// Not much to do.
return None;
}
let mut cursor = queue.cursor_front_mut();
let opt_node = cursor.remove_first(|t| &t.key == key);
// if we took the final waiter currently in the queue, transition to the
// `Empty` state.
if test_dbg!(queue.is_empty()) {
self.store(State::Empty);
}
opt_node
}
}
/// The result of an attempted [`WaitMap::wake()`] operation.
#[derive(Debug)]
pub enum WakeOutcome<V> {
/// The task was successfully woken, and the data was provided.
Woke,
/// No task matching the given key was found in the queue.
NoMatch(V),
/// The queue was already closed when the wake was attempted,
/// and the data was not provided to any task.
Closed(V),
}
// === impl WaitError ===
impl fmt::Display for WaitError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Closed => f.pad("WaitMap closed"),
Self::Duplicate => f.pad("duplicate key"),
&Self::AlreadyConsumed => f.pad("received data has already been consumed"),
Self::NeverAdded => f.pad("Wait was never added to WaitMap"),
}
}
}
feature! {
#![feature = "core-error"]
impl core::error::Error for WaitError {}
}
// === impl Waiter ===
/// A future that ensures a [`Wait`] has been added to a [`WaitMap`].
///
/// See [`Wait::enqueue`] for more information and usage example.
#[must_use = "futures do nothing unless `.await`ed or `poll`ed"]
#[derive(Debug)]
pub struct EnqueueWait<'a, 'b, K: PartialEq, V> {
wait: Pin<&'a mut Wait<'b, K, V>>,
}
impl<'a, 'b, K: PartialEq, V> Future for EnqueueWait<'a, 'b, K, V> {
type Output = WaitResult<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.wait.as_mut().project();
if let WaitState::Start = test_dbg!(&this.waiter.state) {
this.waiter.start_to_wait(this.queue, cx)
} else {
Poll::Ready(Ok(()))
}
}
}
impl<K: PartialEq, V> Waiter<K, V> {
/// Wake the task that owns this `Waiter`.
///
/// # Safety
///
/// This is only safe to call while the list is locked. The `list`
/// parameter ensures this method is only called while holding the lock, so
/// this can be safe.
///
/// Of course, that must be the *same* list that this waiter is a member of,
/// and currently, there is no way to ensure that...
#[inline(always)]
#[cfg_attr(loom, track_caller)]
fn wake(this: NonNull<Self>, list: &mut List<Self>, wakeup: Wakeup<V>) -> Waker {
Waiter::with_node(this, list, |node| {
let waker = test_dbg!(mem::replace(&mut node.waker, wakeup));
match waker {
Wakeup::Waiting(waker) => waker,
_ => unreachable!("tried to wake a waiter in the {:?} state!", waker),
}
})
}
/// # Safety
///
/// This is only safe to call while the list is locked. The dummy `_list`
/// parameter ensures this method is only called while holding the lock, so
/// this can be safe.
///
/// Of course, that must be the *same* list that this waiter is a member of,
/// and currently, there is no way to ensure that...
#[inline(always)]
#[cfg_attr(loom, track_caller)]
fn with_node<T>(
mut this: NonNull<Self>,
_list: &mut List<Self>,
f: impl FnOnce(&mut Node<K, V>) -> T,
) -> T {
unsafe {
// safety: this is only called while holding the lock on the queue,
// so it's safe to mutate the waiter.
this.as_mut().node.with_mut(|node| f(&mut *node))
}
}
/// Moves a `Wait` from the `Start` condition.
///
/// Caller MUST ensure the `Wait` is in the start condition before calling.
fn start_to_wait(
mut self: Pin<&mut Self>,
queue: &WaitMap<K, V>,
cx: &mut Context<'_>,
) -> Poll<WaitResult<()>> {
let mut this = self.as_mut().project();
debug_assert!(
matches!(this.state, WaitState::Start),
"start_to_wait should ONLY be called from the Start state!"
);
// Try to wait...
test_debug!("poll_wait: locking...");
let mut waiters = queue.queue.lock();
test_debug!("poll_wait: -> locked");
let mut queue_state = queue.load();
// transition the queue to the waiting state
'to_waiting: loop {
match test_dbg!(queue_state) {
// the queue is `Empty`, transition to `Waiting`
State::Empty => match queue.compare_exchange(queue_state, State::Waiting) {
Ok(_) => break 'to_waiting,
Err(actual) => queue_state = actual,
},
// the queue is already `Waiting`
State::Waiting => break 'to_waiting,
State::Closed => return closed(),
}
}
// Check if key already exists
//
// Note: It's okay not to re-update the state here, if we were empty
// this check will never trigger, if we are already waiting, we should
// still be waiting.
let mut cursor = waiters.cursor_front_mut();
if cursor.any(|n| &n.key == this.key) {
return duplicate();
}
// enqueue the node
*this.state = WaitState::Waiting;
this.node.as_mut().with_mut(|node| {
unsafe {
// safety: we may mutate the node because we are
// holding the lock.
(*node).waker = Wakeup::Waiting(cx.waker().clone());
}
});
let ptr = unsafe { NonNull::from(Pin::into_inner_unchecked(self)) };
waiters.push_front(ptr);
Poll::Ready(Ok(()))
}
fn poll_wait(
mut self: Pin<&mut Self>,
queue: &WaitMap<K, V>,
cx: &mut Context<'_>,
) -> Poll<WaitResult<V>> {
test_debug!(ptr = ?fmt::ptr(self.as_mut()), "Waiter::poll_wait");
let this = self.as_mut().project();
match test_dbg!(&this.state) {
WaitState::Start => {
let _ = self.start_to_wait(queue, cx)?;
Poll::Pending
}
WaitState::Waiting => {
let mut _waiters = queue.queue.lock();
this.node.with_mut(|node| unsafe {
// safety: we may mutate the node because we are
// holding the lock.
let node = &mut *node;
let result;
node.waker = match mem::replace(&mut node.waker, Wakeup::Empty) {
// We already had a waker, but are now getting another one.
// Store the new one, droping the old one
Wakeup::Waiting(waker) => {
result = Poll::Pending;
if !waker.will_wake(cx.waker()) {
Wakeup::Waiting(cx.waker().clone())
} else {
Wakeup::Waiting(waker)
}
}
// We have received the data, take the data out of the
// future, and provide it to the poller
Wakeup::DataReceived(val) => {
result = notified(val);
Wakeup::Retreived
}
Wakeup::Retreived => {
result = consumed();
Wakeup::Retreived
}
Wakeup::Closed => {
*this.state = WaitState::Completed;
result = closed();
Wakeup::Closed
}
Wakeup::Empty => {
result = never_added();
Wakeup::Closed
}
};
result
})
}
WaitState::Completed => consumed(),
}
}
/// Release this `Waiter` from the queue.
///
/// This is called from the `drop` implementation for the [`Wait`] and
/// [`WaitOwned`] futures.
fn release(mut self: Pin<&mut Self>, queue: &WaitMap<K, V>) {
let state = *(self.as_mut().project().state);
let ptr = NonNull::from(unsafe { Pin::into_inner_unchecked(self) });
test_debug!(self = ?fmt::ptr(ptr), ?state, ?queue, "Waiter::release");
// if we're not enqueued, we don't have to do anything else.
if state != WaitState::Waiting {
return;
}
let mut waiters: MutexGuard<List<Waiter<K, V>>> = queue.queue.lock();
let state = queue.load();
// remove the node
unsafe {
// safety: we have the lock on the queue, so this is safe.
waiters.remove(ptr);
};
// if we removed the last waiter from the queue, transition the state to
// `Empty`.
if test_dbg!(waiters.is_empty()) && state == State::Waiting {
queue.store(State::Empty);
}
}
}
unsafe impl<K: PartialEq, V> Linked<list::Links<Waiter<K, V>>> for Waiter<K, V> {
type Handle = NonNull<Waiter<K, V>>;
fn into_ptr(r: Self::Handle) -> NonNull<Self> {
r
}
unsafe fn from_ptr(ptr: NonNull<Self>) -> Self::Handle {
ptr
}
unsafe fn links(target: NonNull<Self>) -> NonNull<list::Links<Waiter<K, V>>> {
// Safety: using `ptr::addr_of!` avoids creating a temporary
// reference, which stacked borrows dislikes.
let node = ptr::addr_of!((*target.as_ptr()).node);
(*node).with_mut(|node| {
let links = ptr::addr_of_mut!((*node).links);
// Safety: since the `target` pointer is `NonNull`, we can assume
// that pointers to its members are also not null, making this use
// of `new_unchecked` fine.
NonNull::new_unchecked(links)
})
}
}
// === impl Wait ===
impl<K: PartialEq, V> Future for Wait<'_, K, V> {
type Output = WaitResult<V>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
this.waiter.poll_wait(this.queue, cx)
}
}
#[pinned_drop]
impl<K: PartialEq, V> PinnedDrop for Wait<'_, K, V> {
fn drop(mut self: Pin<&mut Self>) {
let this = self.project();
this.waiter.release(this.queue);
}
}
// === impl MapState ===
impl State {
#[inline]
fn from_bits(bits: usize) -> Self {
Self::try_from_bits(bits).expect("This shouldn't be possible")
}
}
impl FromBits<usize> for State {
const BITS: u32 = 2;
type Error = core::convert::Infallible;
fn try_from_bits(bits: usize) -> Result<Self, Self::Error> {
Ok(match bits as u8 {
bits if bits == Self::Empty as u8 => Self::Empty,
bits if bits == Self::Waiting as u8 => Self::Waiting,
bits if bits == Self::Closed as u8 => Self::Closed,
_ => unsafe {
// TODO(AJM): this isn't *totally* true anymore...
unreachable_unchecked!("all potential 2-bit patterns should be covered!")
},
})
}
fn into_bits(self) -> usize {
self.into_usize()
}
}
impl State {
const fn into_usize(self) -> usize {
self as u8 as usize
}
}
// === impl WaitOwned ===
feature! {
#![feature = "alloc"]
use alloc::sync::Arc;
/// Future returned from [`WaitMap::wait_owned()`].
///
/// This is identical to the [`Wait`] future, except that it takes an
/// [`Arc`] reference to the [`WaitMap`], allowing the returned future to
/// live for the `'static` lifetime.
///
/// This future is fused, so once it has completed, any future calls to poll
/// will immediately return [`Poll::Ready`].
#[derive(Debug)]
#[pin_project(PinnedDrop)]
pub struct WaitOwned<K: PartialEq, V> {
/// The `WaitMap` being waited on.
queue: Arc<WaitMap<K, V>>,
/// Entry in the wait queue.
#[pin]
waiter: Waiter<K, V>,
}
impl<K: PartialEq, V> WaitMap<K, V> {
/// Wait to be woken up by this queue, returning a future that's valid
/// for the `'static` lifetime.
///
/// This is identical to the [`wait`] method, except that it takes a
/// [`Arc`] reference to the [`WaitMap`], allowing the returned future to
/// live for the `'static` lifetime.
///
/// This returns a [`WaitOwned`] future that will complete when the task is
/// woken by a call to [`wake`] with a matching `key`, or when the `WaitMap`
/// is dropped.
///
/// **Note**: `key`s must be unique. If the given key already exists in the
/// `WaitMap`, the future will resolve to an Error the first time it is polled
///
/// [`wake`]: Self::wake
/// [`wait`]: Self::wait
pub fn wait_owned(self: &Arc<Self>, key: K) -> WaitOwned<K, V> {
let waiter = self.waiter(key);
let queue = self.clone();
WaitOwned { queue, waiter }
}
}
impl<K: PartialEq, V> Future for WaitOwned<K, V> {
type Output = WaitResult<V>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
this.waiter.poll_wait(&*this.queue, cx)
}
}
#[pinned_drop]
impl<K: PartialEq, V> PinnedDrop for WaitOwned<K, V> {
fn drop(mut self: Pin<&mut Self>) {
let this = self.project();
this.waiter.release(&*this.queue);
}
}
}
impl<V> fmt::Debug for Wakeup<V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Empty => f.write_str("Wakeup::Empty"),
Self::Waiting(waker) => f.debug_tuple("Wakeup::Waiting").field(waker).finish(),
Self::DataReceived(_) => f.write_str("Wakeup::DataReceived(..)"),
Self::Retreived => f.write_str("Wakeup::Retrieved"),
Self::Closed => f.write_str("Wakeup::Closed"),
}
}
}