num_traits/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Numeric traits for generic mathematics
//!
//! ## Compatibility
//!
//! The `num-traits` crate is tested for rustc 1.8 and greater.
#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
#![deny(unconditional_recursion)]
#![no_std]
#[cfg(feature = "std")]
extern crate std;
// Only `no_std` builds actually use `libm`.
#[cfg(all(not(feature = "std"), feature = "libm"))]
extern crate libm;
use core::fmt;
use core::num::Wrapping;
use core::ops::{Add, Div, Mul, Rem, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
pub use bounds::Bounded;
#[cfg(any(feature = "std", feature = "libm"))]
pub use float::Float;
pub use float::FloatConst;
// pub use real::{FloatCore, Real}; // NOTE: Don't do this, it breaks `use num_traits::*;`.
pub use cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive};
pub use identities::{one, zero, One, Zero};
pub use int::PrimInt;
pub use ops::checked::{
CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub,
};
pub use ops::euclid::{CheckedEuclid, Euclid};
pub use ops::inv::Inv;
pub use ops::mul_add::{MulAdd, MulAddAssign};
pub use ops::saturating::{Saturating, SaturatingAdd, SaturatingMul, SaturatingSub};
pub use ops::wrapping::{
WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub,
};
pub use pow::{checked_pow, pow, Pow};
pub use sign::{abs, abs_sub, signum, Signed, Unsigned};
#[macro_use]
mod macros;
pub mod bounds;
pub mod cast;
pub mod float;
pub mod identities;
pub mod int;
pub mod ops;
pub mod pow;
pub mod real;
pub mod sign;
/// The base trait for numeric types, covering `0` and `1` values,
/// comparisons, basic numeric operations, and string conversion.
pub trait Num: PartialEq + Zero + One + NumOps {
type FromStrRadixErr;
/// Convert from a string and radix (typically `2..=36`).
///
/// # Examples
///
/// ```rust
/// use num_traits::Num;
///
/// let result = <i32 as Num>::from_str_radix("27", 10);
/// assert_eq!(result, Ok(27));
///
/// let result = <i32 as Num>::from_str_radix("foo", 10);
/// assert!(result.is_err());
/// ```
///
/// # Supported radices
///
/// The exact range of supported radices is at the discretion of each type implementation. For
/// primitive integers, this is implemented by the inherent `from_str_radix` methods in the
/// standard library, which **panic** if the radix is not in the range from 2 to 36. The
/// implementation in this crate for primitive floats is similar.
///
/// For third-party types, it is suggested that implementations should follow suit and at least
/// accept `2..=36` without panicking, but an `Err` may be returned for any unsupported radix.
/// It's possible that a type might not even support the common radix 10, nor any, if string
/// parsing doesn't make sense for that type.
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
}
/// Generic trait for types implementing basic numeric operations
///
/// This is automatically implemented for types which implement the operators.
pub trait NumOps<Rhs = Self, Output = Self>:
Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
+ Rem<Rhs, Output = Output>
{
}
impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
T: Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
+ Rem<Rhs, Output = Output>
{
}
/// The trait for `Num` types which also implement numeric operations taking
/// the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
/// The trait for `Num` references which implement numeric operations, taking the
/// second operand either by value or by reference.
///
/// This is automatically implemented for all types which implement the operators. It covers
/// every type implementing the operations though, regardless of it being a reference or
/// related to `Num`.
pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
/// Generic trait for types implementing numeric assignment operators (like `+=`).
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignOps<Rhs = Self>:
AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}
impl<T, Rhs> NumAssignOps<Rhs> for T where
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}
/// The trait for `Num` types which also implement assignment operators.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssign: Num + NumAssignOps {}
impl<T> NumAssign for T where T: Num + NumAssignOps {}
/// The trait for `NumAssign` types which also implement assignment operations
/// taking the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
macro_rules! int_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ::core::num::ParseIntError;
#[inline]
fn from_str_radix(s: &str, radix: u32)
-> Result<Self, ::core::num::ParseIntError>
{
<$t>::from_str_radix(s, radix)
}
}
)*)
}
int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
#[cfg(has_i128)]
int_trait_impl!(Num for u128 i128);
impl<T: Num> Num for Wrapping<T>
where
Wrapping<T>: NumOps,
{
type FromStrRadixErr = T::FromStrRadixErr;
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
T::from_str_radix(str, radix).map(Wrapping)
}
}
#[derive(Debug)]
pub enum FloatErrorKind {
Empty,
Invalid,
}
// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
// so there's not really any way for us to reuse it.
#[derive(Debug)]
pub struct ParseFloatError {
pub kind: FloatErrorKind,
}
impl fmt::Display for ParseFloatError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let description = match self.kind {
FloatErrorKind::Empty => "cannot parse float from empty string",
FloatErrorKind::Invalid => "invalid float literal",
};
description.fmt(f)
}
}
fn str_to_ascii_lower_eq_str(a: &str, b: &str) -> bool {
a.len() == b.len()
&& a.bytes().zip(b.bytes()).all(|(a, b)| {
let a_to_ascii_lower = a | (((b'A' <= a && a <= b'Z') as u8) << 5);
a_to_ascii_lower == b
})
}
// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
// with this implementation ourselves until we want to make a breaking change.
// (would have to drop it from `Num` though)
macro_rules! float_trait_impl {
($name:ident for $($t:ident)*) => ($(
impl $name for $t {
type FromStrRadixErr = ParseFloatError;
fn from_str_radix(src: &str, radix: u32)
-> Result<Self, Self::FromStrRadixErr>
{
use self::FloatErrorKind::*;
use self::ParseFloatError as PFE;
// Special case radix 10 to use more accurate standard library implementation
if radix == 10 {
return src.parse().map_err(|_| PFE {
kind: if src.is_empty() { Empty } else { Invalid },
});
}
// Special values
if str_to_ascii_lower_eq_str(src, "inf")
|| str_to_ascii_lower_eq_str(src, "infinity")
{
return Ok(core::$t::INFINITY);
} else if str_to_ascii_lower_eq_str(src, "-inf")
|| str_to_ascii_lower_eq_str(src, "-infinity")
{
return Ok(core::$t::NEG_INFINITY);
} else if str_to_ascii_lower_eq_str(src, "nan") {
return Ok(core::$t::NAN);
} else if str_to_ascii_lower_eq_str(src, "-nan") {
return Ok(-core::$t::NAN);
}
fn slice_shift_char(src: &str) -> Option<(char, &str)> {
let mut chars = src.chars();
if let Some(ch) = chars.next() {
Some((ch, chars.as_str()))
} else {
None
}
}
let (is_positive, src) = match slice_shift_char(src) {
None => return Err(PFE { kind: Empty }),
Some(('-', "")) => return Err(PFE { kind: Empty }),
Some(('-', src)) => (false, src),
Some((_, _)) => (true, src),
};
// The significand to accumulate
let mut sig = if is_positive { 0.0 } else { -0.0 };
// Necessary to detect overflow
let mut prev_sig = sig;
let mut cs = src.chars().enumerate();
// Exponent prefix and exponent index offset
let mut exp_info = None::<(char, usize)>;
// Parse the integer part of the significand
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// shift significand one digit left
sig = sig * (radix as $t);
// add/subtract current digit depending on sign
if is_positive {
sig = sig + ((digit as isize) as $t);
} else {
sig = sig - ((digit as isize) as $t);
}
// Detect overflow by comparing to last value, except
// if we've not seen any non-zero digits.
if prev_sig != 0.0 {
if is_positive && sig <= prev_sig
{ return Ok(core::$t::INFINITY); }
if !is_positive && sig >= prev_sig
{ return Ok(core::$t::NEG_INFINITY); }
// Detect overflow by reversing the shift-and-add process
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
{ return Ok(core::$t::INFINITY); }
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
{ return Ok(core::$t::NEG_INFINITY); }
}
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
'.' => {
break; // start of fractional part
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
// If we are not yet at the exponent parse the fractional
// part of the significand
if exp_info.is_none() {
let mut power = 1.0;
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// Decrease power one order of magnitude
power = power / (radix as $t);
// add/subtract current digit depending on sign
sig = if is_positive {
sig + (digit as $t) * power
} else {
sig - (digit as $t) * power
};
// Detect overflow by comparing to last value
if is_positive && sig < prev_sig
{ return Ok(core::$t::INFINITY); }
if !is_positive && sig > prev_sig
{ return Ok(core::$t::NEG_INFINITY); }
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
}
// Parse and calculate the exponent
let exp = match exp_info {
Some((c, offset)) => {
let base = match c {
'E' | 'e' if radix == 10 => 10.0,
'P' | 'p' if radix == 16 => 2.0,
_ => return Err(PFE { kind: Invalid }),
};
// Parse the exponent as decimal integer
let src = &src[offset..];
let (is_positive, exp) = match slice_shift_char(src) {
Some(('-', src)) => (false, src.parse::<usize>()),
Some(('+', src)) => (true, src.parse::<usize>()),
Some((_, _)) => (true, src.parse::<usize>()),
None => return Err(PFE { kind: Invalid }),
};
#[cfg(feature = "std")]
fn pow(base: $t, exp: usize) -> $t {
Float::powi(base, exp as i32)
}
// otherwise uses the generic `pow` from the root
match (is_positive, exp) {
(true, Ok(exp)) => pow(base, exp),
(false, Ok(exp)) => 1.0 / pow(base, exp),
(_, Err(_)) => return Err(PFE { kind: Invalid }),
}
},
None => 1.0, // no exponent
};
Ok(sig * exp)
}
}
)*)
}
float_trait_impl!(Num for f32 f64);
/// A value bounded by a minimum and a maximum
///
/// If input is less than min then this returns min.
/// If input is greater than max then this returns max.
/// Otherwise this returns input.
///
/// **Panics** in debug mode if `!(min <= max)`.
#[inline]
pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
debug_assert!(min <= max, "min must be less than or equal to max");
if input < min {
min
} else if input > max {
max
} else {
input
}
}
/// A value bounded by a minimum value
///
/// If input is less than min then this returns min.
/// Otherwise this returns input.
/// `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`.
///
/// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.)
#[inline]
pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T {
debug_assert!(min == min, "min must not be NAN");
if input < min {
min
} else {
input
}
}
/// A value bounded by a maximum value
///
/// If input is greater than max then this returns max.
/// Otherwise this returns input.
/// `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`.
///
/// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.)
#[inline]
pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T {
debug_assert!(max == max, "max must not be NAN");
if input > max {
max
} else {
input
}
}
#[test]
fn clamp_test() {
// Int test
assert_eq!(1, clamp(1, -1, 2));
assert_eq!(-1, clamp(-2, -1, 2));
assert_eq!(2, clamp(3, -1, 2));
assert_eq!(1, clamp_min(1, -1));
assert_eq!(-1, clamp_min(-2, -1));
assert_eq!(-1, clamp_max(1, -1));
assert_eq!(-2, clamp_max(-2, -1));
// Float test
assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
assert_eq!(1.0, clamp_min(1.0, -1.0));
assert_eq!(-1.0, clamp_min(-2.0, -1.0));
assert_eq!(-1.0, clamp_max(1.0, -1.0));
assert_eq!(-2.0, clamp_max(-2.0, -1.0));
assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan());
assert!(clamp_min(::core::f32::NAN, 1.0).is_nan());
assert!(clamp_max(::core::f32::NAN, 1.0).is_nan());
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_min() {
clamp(0., ::core::f32::NAN, 1.);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_max() {
clamp(0., -1., ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_min_max() {
clamp(0., ::core::f32::NAN, ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_min_nan_min() {
clamp_min(0., ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_max_nan_max() {
clamp_max(0., ::core::f32::NAN);
}
#[test]
fn from_str_radix_unwrap() {
// The Result error must impl Debug to allow unwrap()
let i: i32 = Num::from_str_radix("0", 10).unwrap();
assert_eq!(i, 0);
let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
assert_eq!(f, 0.0);
}
#[test]
fn from_str_radix_multi_byte_fail() {
// Ensure parsing doesn't panic, even on invalid sign characters
assert!(f32::from_str_radix("™0.2", 10).is_err());
// Even when parsing the exponent sign
assert!(f32::from_str_radix("0.2E™1", 10).is_err());
}
#[test]
fn from_str_radix_ignore_case() {
assert_eq!(
f32::from_str_radix("InF", 16).unwrap(),
::core::f32::INFINITY
);
assert_eq!(
f32::from_str_radix("InfinitY", 16).unwrap(),
::core::f32::INFINITY
);
assert_eq!(
f32::from_str_radix("-InF", 8).unwrap(),
::core::f32::NEG_INFINITY
);
assert_eq!(
f32::from_str_radix("-InfinitY", 8).unwrap(),
::core::f32::NEG_INFINITY
);
assert!(f32::from_str_radix("nAn", 4).unwrap().is_nan());
assert!(f32::from_str_radix("-nAn", 4).unwrap().is_nan());
}
#[test]
fn wrapping_is_num() {
fn require_num<T: Num>(_: &T) {}
require_num(&Wrapping(42_u32));
require_num(&Wrapping(-42));
}
#[test]
fn wrapping_from_str_radix() {
macro_rules! test_wrapping_from_str_radix {
($($t:ty)+) => {
$(
for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
assert_eq!(w, <$t as Num>::from_str_radix(s, r));
}
)+
};
}
test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn check_num_ops() {
fn compute<T: Num + Copy>(x: T, y: T) -> T {
x * y / y % y + y - y
}
assert_eq!(compute(1, 2), 1)
}
#[test]
fn check_numref_ops() {
fn compute<T: NumRef>(x: T, y: &T) -> T {
x * y / y % y + y - y
}
assert_eq!(compute(1, &2), 1)
}
#[test]
fn check_refnum_ops() {
fn compute<T: Copy>(x: &T, y: T) -> T
where
for<'a> &'a T: RefNum<T>,
{
&(&(&(&(x * y) / y) % y) + y) - y
}
assert_eq!(compute(&1, 2), 1)
}
#[test]
fn check_refref_ops() {
fn compute<T>(x: &T, y: &T) -> T
where
for<'a> &'a T: RefNum<T>,
{
&(&(&(&(x * y) / y) % y) + y) - y
}
assert_eq!(compute(&1, &2), 1)
}
#[test]
fn check_numassign_ops() {
fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
x *= y;
x /= y;
x %= y;
x += y;
x -= y;
x
}
assert_eq!(compute(1, 2), 1)
}
#[cfg(has_int_assignop_ref)]
#[test]
fn check_numassignref_ops() {
fn compute<T: NumAssignRef + Copy>(mut x: T, y: &T) -> T {
x *= y;
x /= y;
x %= y;
x += y;
x -= y;
x
}
assert_eq!(compute(1, &2), 1)
}