spinning_top/
spinlock.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// This implementation is based on:
// https://github.com/Amanieu/parking_lot/tree/fa294cd677936bf365afa0497039953b10c722f5/lock_api
// and
// https://github.com/mvdnes/spin-rs/tree/7516c8037d3d15712ba4d8499ab075e97a19d778

use core::{
    hint,
    sync::atomic::{AtomicBool, Ordering},
};
use lock_api::{GuardSend, RawMutex};

/// Provides mutual exclusion based on spinning on an `AtomicBool`.
///
/// It's recommended to use this type either combination with [`lock_api::Mutex`] or
/// through the [`Spinlock`] type.
///
/// ## Example
///
/// ```rust
/// use lock_api::RawMutex;
/// let lock = spinning_top::RawSpinlock::INIT;
/// assert_eq!(lock.try_lock(), true); // lock it
/// assert_eq!(lock.try_lock(), false); // can't be locked a second time
/// unsafe { lock.unlock(); } // unlock it
/// assert_eq!(lock.try_lock(), true); // now it can be locked again
#[derive(Debug)]
pub struct RawSpinlock {
    /// Whether the spinlock is locked.
    locked: AtomicBool,
}

impl RawSpinlock {
    // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
    // when called in a loop.
    fn try_lock_weak(&self) -> bool {
        // The Orderings are the same as try_lock, and are still correct here.
        self.locked
            .compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
    }
}

unsafe impl RawMutex for RawSpinlock {
    const INIT: RawSpinlock = RawSpinlock {
        locked: AtomicBool::new(false),
    };

    // A spinlock guard can be sent to another thread and unlocked there
    type GuardMarker = GuardSend;

    fn lock(&self) {
        while !self.try_lock_weak() {
            // Wait until the lock looks unlocked before retrying
            // Code from https://github.com/mvdnes/spin-rs/commit/d3e60d19adbde8c8e9d3199c7c51e51ee5a20bf6
            while self.is_locked() {
                // Tell the CPU that we're inside a busy-wait loop
                hint::spin_loop();
            }
        }
    }

    fn try_lock(&self) -> bool {
        // Code taken from:
        // https://github.com/Amanieu/parking_lot/blob/fa294cd677936bf365afa0497039953b10c722f5/lock_api/src/lib.rs#L49-L53
        //
        // The reason for using a strong compare_exchange is explained here:
        // https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
        //
        // The second Ordering argument specfies the ordering when the compare_exchange
        // fails. Since we don't access any critical data if we fail to acquire the lock,
        // we can use a Relaxed ordering in this case.
        self.locked
            .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
    }

    unsafe fn unlock(&self) {
        self.locked.store(false, Ordering::Release);
    }

    fn is_locked(&self) -> bool {
        // Relaxed is sufficient because this operation does not provide synchronization, only atomicity.
        self.locked.load(Ordering::Relaxed)
    }
}

/// A mutual exclusion (Mutex) type based on busy-waiting.
///
/// Calling `lock` (or `try_lock`) on this type returns a [`SpinlockGuard`], which
/// automatically frees the lock when it goes out of scope.
///
/// ## Example
///
/// ```rust
/// use spinning_top::Spinlock;
///
/// fn main() {
///     // Wrap some data in a spinlock
///     let data = String::from("Hello");
///     let spinlock = Spinlock::new(data);
///     make_uppercase(&spinlock); // only pass a shared reference
///
///     // We have ownership of the spinlock, so we can extract the data without locking
///     // Note: this consumes the spinlock
///     let data = spinlock.into_inner();
///     assert_eq!(data.as_str(), "HELLO");
/// }
///
/// fn make_uppercase(spinlock: &Spinlock<String>) {
///     // Lock the spinlock to get a mutable reference to the data
///     let mut locked_data = spinlock.lock();
///     assert_eq!(locked_data.as_str(), "Hello");
///     locked_data.make_ascii_uppercase();
///
///     // the lock is automatically freed at the end of the scope
/// }
/// ```
///
/// ## Usage in statics
///
/// `Spinlock::new` is a `const` function. This makes the `Spinlock` type
/// usable in statics:
///
/// ```rust,ignore
/// use spinning_top::Spinlock;
///
/// static DATA: Spinlock<u32> = Spinlock::new(0);
///
/// fn main() {
///     let mut data = DATA.lock();
///     *data += 1;
///     assert_eq!(*data, 1);
/// }
/// ```
pub type Spinlock<T> = lock_api::Mutex<RawSpinlock, T>;

/// A RAII guard that frees the spinlock when it goes out of scope.
///
/// Allows access to the locked data through the [`core::ops::Deref`] and [`core::ops::DerefMut`] operations.
///
/// ## Example
///
/// ```rust
/// use spinning_top::{Spinlock, SpinlockGuard};
///
/// let spinlock = Spinlock::new(Vec::new());
///
/// // begin a new scope
/// {
///     // lock the spinlock to create a `SpinlockGuard`
///     let mut guard: SpinlockGuard<_> = spinlock.lock();
///
///     // guard can be used like a `&mut Vec` since it implements `DerefMut`
///     guard.push(1);
///     guard.push(2);
///     assert_eq!(guard.len(), 2);
/// } // guard is dropped -> frees the spinlock again
///
/// // spinlock is unlocked again
/// assert!(spinlock.try_lock().is_some());
/// ```
pub type SpinlockGuard<'a, T> = lock_api::MutexGuard<'a, RawSpinlock, T>;

/// A RAII guard returned by `SpinlockGuard::map`.
///
/// ## Example
/// ```rust
/// use spinning_top::{MappedSpinlockGuard, Spinlock, SpinlockGuard};
///
/// let spinlock = Spinlock::new(Some(3));
///
/// // Begin a new scope.
/// {
///     // Lock the spinlock to create a `SpinlockGuard`.
///     let mut guard: SpinlockGuard<_> = spinlock.lock();
///
///     // Map the internal value of `gurad`. `guard` is moved.
///     let mut mapped: MappedSpinlockGuard<'_, _> =
///         SpinlockGuard::map(guard, |g| g.as_mut().unwrap());
///     assert_eq!(*mapped, 3);
///
///     *mapped = 5;
///     assert_eq!(*mapped, 5);
/// } // `mapped` is dropped -> frees the spinlock again.
///
/// // The operation is reflected to the original lock.
/// assert_eq!(*spinlock.lock(), Some(5));
/// ```
pub type MappedSpinlockGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawSpinlock, T>;

/// Create an unlocked `Spinlock` in a `const` context.
///
/// ## Example
///
/// ```rust
/// use spinning_top::{const_spinlock, Spinlock};
///
/// static SPINLOCK: Spinlock<i32> = const_spinlock(42);
/// ```
pub const fn const_spinlock<T>(val: T) -> Spinlock<T> {
    Spinlock::const_new(<RawSpinlock as lock_api::RawMutex>::INIT, val)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn create_and_lock() {
        let spinlock = Spinlock::new(42);
        let data = spinlock.try_lock();
        assert!(data.is_some());
        assert_eq!(*data.unwrap(), 42);
    }

    #[test]
    fn mutual_exclusion() {
        let spinlock = Spinlock::new(1);
        let data = spinlock.try_lock();
        assert!(data.is_some());
        assert!(spinlock.try_lock().is_none());
        assert!(spinlock.try_lock().is_none()); // still None
        core::mem::drop(data);
        assert!(spinlock.try_lock().is_some());
    }

    #[test]
    fn three_locks() {
        let spinlock1 = Spinlock::new(1);
        let spinlock2 = Spinlock::new(2);
        let spinlock3 = Spinlock::new(3);
        let data1 = spinlock1.try_lock();
        let data2 = spinlock2.try_lock();
        let data3 = spinlock3.try_lock();
        assert!(data1.is_some());
        assert!(data2.is_some());
        assert!(data3.is_some());
        assert!(spinlock1.try_lock().is_none());
        assert!(spinlock1.try_lock().is_none()); // still None
        assert!(spinlock2.try_lock().is_none());
        assert!(spinlock3.try_lock().is_none());
        core::mem::drop(data3);
        assert!(spinlock3.try_lock().is_some());
    }

    #[test]
    fn mapped_lock() {
        let spinlock = Spinlock::new([1, 2, 3]);
        let data = spinlock.lock();
        let mut mapped = SpinlockGuard::map(data, |d| &mut d[0]);
        assert_eq!(*mapped, 1);
        *mapped = 4;
        assert_eq!(*mapped, 4);
        core::mem::drop(mapped);
        assert!(!spinlock.is_locked());
        assert_eq!(*spinlock.lock(), [4, 2, 3]);
    }
}