spinning_top/spinlock.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
// This implementation is based on:
// https://github.com/Amanieu/parking_lot/tree/fa294cd677936bf365afa0497039953b10c722f5/lock_api
// and
// https://github.com/mvdnes/spin-rs/tree/7516c8037d3d15712ba4d8499ab075e97a19d778
use core::{
hint,
sync::atomic::{AtomicBool, Ordering},
};
use lock_api::{GuardSend, RawMutex};
/// Provides mutual exclusion based on spinning on an `AtomicBool`.
///
/// It's recommended to use this type either combination with [`lock_api::Mutex`] or
/// through the [`Spinlock`] type.
///
/// ## Example
///
/// ```rust
/// use lock_api::RawMutex;
/// let lock = spinning_top::RawSpinlock::INIT;
/// assert_eq!(lock.try_lock(), true); // lock it
/// assert_eq!(lock.try_lock(), false); // can't be locked a second time
/// unsafe { lock.unlock(); } // unlock it
/// assert_eq!(lock.try_lock(), true); // now it can be locked again
#[derive(Debug)]
pub struct RawSpinlock {
/// Whether the spinlock is locked.
locked: AtomicBool,
}
impl RawSpinlock {
// Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
// when called in a loop.
fn try_lock_weak(&self) -> bool {
// The Orderings are the same as try_lock, and are still correct here.
self.locked
.compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
}
}
unsafe impl RawMutex for RawSpinlock {
const INIT: RawSpinlock = RawSpinlock {
locked: AtomicBool::new(false),
};
// A spinlock guard can be sent to another thread and unlocked there
type GuardMarker = GuardSend;
fn lock(&self) {
while !self.try_lock_weak() {
// Wait until the lock looks unlocked before retrying
// Code from https://github.com/mvdnes/spin-rs/commit/d3e60d19adbde8c8e9d3199c7c51e51ee5a20bf6
while self.is_locked() {
// Tell the CPU that we're inside a busy-wait loop
hint::spin_loop();
}
}
}
fn try_lock(&self) -> bool {
// Code taken from:
// https://github.com/Amanieu/parking_lot/blob/fa294cd677936bf365afa0497039953b10c722f5/lock_api/src/lib.rs#L49-L53
//
// The reason for using a strong compare_exchange is explained here:
// https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
//
// The second Ordering argument specfies the ordering when the compare_exchange
// fails. Since we don't access any critical data if we fail to acquire the lock,
// we can use a Relaxed ordering in this case.
self.locked
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
}
unsafe fn unlock(&self) {
self.locked.store(false, Ordering::Release);
}
fn is_locked(&self) -> bool {
// Relaxed is sufficient because this operation does not provide synchronization, only atomicity.
self.locked.load(Ordering::Relaxed)
}
}
/// A mutual exclusion (Mutex) type based on busy-waiting.
///
/// Calling `lock` (or `try_lock`) on this type returns a [`SpinlockGuard`], which
/// automatically frees the lock when it goes out of scope.
///
/// ## Example
///
/// ```rust
/// use spinning_top::Spinlock;
///
/// fn main() {
/// // Wrap some data in a spinlock
/// let data = String::from("Hello");
/// let spinlock = Spinlock::new(data);
/// make_uppercase(&spinlock); // only pass a shared reference
///
/// // We have ownership of the spinlock, so we can extract the data without locking
/// // Note: this consumes the spinlock
/// let data = spinlock.into_inner();
/// assert_eq!(data.as_str(), "HELLO");
/// }
///
/// fn make_uppercase(spinlock: &Spinlock<String>) {
/// // Lock the spinlock to get a mutable reference to the data
/// let mut locked_data = spinlock.lock();
/// assert_eq!(locked_data.as_str(), "Hello");
/// locked_data.make_ascii_uppercase();
///
/// // the lock is automatically freed at the end of the scope
/// }
/// ```
///
/// ## Usage in statics
///
/// `Spinlock::new` is a `const` function. This makes the `Spinlock` type
/// usable in statics:
///
/// ```rust,ignore
/// use spinning_top::Spinlock;
///
/// static DATA: Spinlock<u32> = Spinlock::new(0);
///
/// fn main() {
/// let mut data = DATA.lock();
/// *data += 1;
/// assert_eq!(*data, 1);
/// }
/// ```
pub type Spinlock<T> = lock_api::Mutex<RawSpinlock, T>;
/// A RAII guard that frees the spinlock when it goes out of scope.
///
/// Allows access to the locked data through the [`core::ops::Deref`] and [`core::ops::DerefMut`] operations.
///
/// ## Example
///
/// ```rust
/// use spinning_top::{Spinlock, SpinlockGuard};
///
/// let spinlock = Spinlock::new(Vec::new());
///
/// // begin a new scope
/// {
/// // lock the spinlock to create a `SpinlockGuard`
/// let mut guard: SpinlockGuard<_> = spinlock.lock();
///
/// // guard can be used like a `&mut Vec` since it implements `DerefMut`
/// guard.push(1);
/// guard.push(2);
/// assert_eq!(guard.len(), 2);
/// } // guard is dropped -> frees the spinlock again
///
/// // spinlock is unlocked again
/// assert!(spinlock.try_lock().is_some());
/// ```
pub type SpinlockGuard<'a, T> = lock_api::MutexGuard<'a, RawSpinlock, T>;
/// A RAII guard returned by `SpinlockGuard::map`.
///
/// ## Example
/// ```rust
/// use spinning_top::{MappedSpinlockGuard, Spinlock, SpinlockGuard};
///
/// let spinlock = Spinlock::new(Some(3));
///
/// // Begin a new scope.
/// {
/// // Lock the spinlock to create a `SpinlockGuard`.
/// let mut guard: SpinlockGuard<_> = spinlock.lock();
///
/// // Map the internal value of `gurad`. `guard` is moved.
/// let mut mapped: MappedSpinlockGuard<'_, _> =
/// SpinlockGuard::map(guard, |g| g.as_mut().unwrap());
/// assert_eq!(*mapped, 3);
///
/// *mapped = 5;
/// assert_eq!(*mapped, 5);
/// } // `mapped` is dropped -> frees the spinlock again.
///
/// // The operation is reflected to the original lock.
/// assert_eq!(*spinlock.lock(), Some(5));
/// ```
pub type MappedSpinlockGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawSpinlock, T>;
/// Create an unlocked `Spinlock` in a `const` context.
///
/// ## Example
///
/// ```rust
/// use spinning_top::{const_spinlock, Spinlock};
///
/// static SPINLOCK: Spinlock<i32> = const_spinlock(42);
/// ```
pub const fn const_spinlock<T>(val: T) -> Spinlock<T> {
Spinlock::const_new(<RawSpinlock as lock_api::RawMutex>::INIT, val)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn create_and_lock() {
let spinlock = Spinlock::new(42);
let data = spinlock.try_lock();
assert!(data.is_some());
assert_eq!(*data.unwrap(), 42);
}
#[test]
fn mutual_exclusion() {
let spinlock = Spinlock::new(1);
let data = spinlock.try_lock();
assert!(data.is_some());
assert!(spinlock.try_lock().is_none());
assert!(spinlock.try_lock().is_none()); // still None
core::mem::drop(data);
assert!(spinlock.try_lock().is_some());
}
#[test]
fn three_locks() {
let spinlock1 = Spinlock::new(1);
let spinlock2 = Spinlock::new(2);
let spinlock3 = Spinlock::new(3);
let data1 = spinlock1.try_lock();
let data2 = spinlock2.try_lock();
let data3 = spinlock3.try_lock();
assert!(data1.is_some());
assert!(data2.is_some());
assert!(data3.is_some());
assert!(spinlock1.try_lock().is_none());
assert!(spinlock1.try_lock().is_none()); // still None
assert!(spinlock2.try_lock().is_none());
assert!(spinlock3.try_lock().is_none());
core::mem::drop(data3);
assert!(spinlock3.try_lock().is_some());
}
#[test]
fn mapped_lock() {
let spinlock = Spinlock::new([1, 2, 3]);
let data = spinlock.lock();
let mut mapped = SpinlockGuard::map(data, |d| &mut d[0]);
assert_eq!(*mapped, 1);
*mapped = 4;
assert_eq!(*mapped, 4);
core::mem::drop(mapped);
assert!(!spinlock.is_locked());
assert_eq!(*spinlock.lock(), [4, 2, 3]);
}
}